Stephen Philip Jackson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2068338/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Microarray screening reveals two non-conventional SUMO-binding modules linked to DNA repair by non-homologous end-joining. Nucleic Acids Research, 2022, 50, 4732-4754.	6.5	4
2	SHLD1 is dispensable for 53BP1-dependent V(D)J recombination but critical for productive class switch recombination. Nature Communications, 2022, 13, .	5.8	7
3	Mutagenic mechanisms of cancer-associated DNA polymerase ϵ alleles. Nucleic Acids Research, 2021, 49, 3919-3931.	6.5	12
4	Interfaces between cellular responses to DNA damage and cancer immunotherapy. Genes and Development, 2021, 35, 602-618.	2.7	61
5	The ELOF(1)ant in the room of TCR. Nature Cell Biology, 2021, 23, 584-586.	4.6	2
6	Loss of Cyclin C or CDK8 provides ATR inhibitor resistance by suppressing transcription-associated replication stress. Nucleic Acids Research, 2021, 49, 8665-8683.	6.5	25
7	Combinatorial CRISPR screen identifies fitness effects of gene paralogues. Nature Communications, 2021, 12, 1302.	5.8	59
8	Trajectory and uniqueness of mutational signatures in yeast mutators. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 24947-24956.	3.3	29
9	The phosphoinositide 3-kinase inhibitor alpelisib restores actin organization and improves proximal tubule dysfunction inÂvitro and in a mouse model of Lowe syndrome and Dent disease. Kidney International, 2020, 98, 883-896.	2.6	14
10	Myocardial Fibrosis in Heart Failure: Anti-Fibrotic Therapies and the Role of Cardiovascular Magnetic Resonance in Drug Trials. Cardiology and Therapy, 2020, 9, 363-376.	1.1	35
11	CCDC61/VFL3 Is a Paralog of SAS6 and Promotes Ciliary Functions. Structure, 2020, 28, 674-689.e11.	1.6	16
12	Chronic irradiation of human cells reduces histone levels and deregulates gene expression. Scientific Reports, 2020, 10, 2200.	1.6	18
13	PALB2 chromatin recruitment restores homologous recombination in BRCA1-deficient cells depleted of 53BP1. Nature Communications, 2020, 11, 819.	5.8	43
14	Parallel CRISPR-Cas9 screens clarify impacts of p53 on screen performance. ELife, 2020, 9, .	2.8	36
15	MDC1 PST-repeat region promotes histone H2AX-independent chromatin association and DNA damage tolerance. Nature Communications, 2019, 10, 5191.	5.8	35
16	Genome architecture and stability in the Saccharomyces cerevisiae knockout collection. Nature, 2019, 573, 416-420.	13.7	72
17	Small-Molecule Inhibition of UBE2T/FANCL-Mediated Ubiquitylation in the Fanconi Anemia Pathway. ACS Chemical Biology, 2019, 14, 2148-2154.	1.6	17
18	Derivation and maintenance of mouse haploid embryonic stem cells. Nature Protocols, 2019, 14, 1991-2014.	5.5	12

2

#	Article	IF	CITATIONS
19	A Compendium of Mutational Signatures of Environmental Agents. Cell, 2019, 177, 821-836.e16.	13.5	437
20	Genetic predisposition to mosaic Y chromosome loss in blood. Nature, 2019, 575, 652-657.	13.7	198
21	Predicting the mutations generated by repair of Cas9-induced double-strand breaks. Nature Biotechnology, 2019, 37, 64-72.	9.4	359
22	Microtubules Deform the Nuclear Membrane and Disrupt Nucleocytoplasmic Transport in Tau-Mediated Frontotemporal Dementia. Cell Reports, 2019, 26, 582-593.e5.	2.9	119
23	ATM orchestrates the DNA-damage response to counter toxic non-homologous end-joining at broken replication forks. Nature Communications, 2019, 10, 87.	5.8	133
24	Detection of functional protein domains by unbiased genome-wide forward genetic screening. Scientific Reports, 2018, 8, 6161.	1.6	14
25	Validating the concept of mutational signatures with isogenic cell models. Nature Communications, 2018, 9, 1744.	5.8	128
26	Targeting of NAT10 enhances healthspan in a mouse model of human accelerated aging syndrome. Nature Communications, 2018, 9, 1700.	5.8	103
27	Deubiquitylating enzymes and drug discovery: emerging opportunities. Nature Reviews Drug Discovery, 2018, 17, 57-78.	21.5	555
28	Phosphorylation of Histone H4T80 Triggers DNA Damage Checkpoint Recovery. Molecular Cell, 2018, 72, 625-635.e4.	4.5	21
29	Inhibition of the acetyltransferase NAT10 normalizes progeric and aging cells by rebalancing the Transportin-1 nuclear import pathway. Science Signaling, 2018, 11, .	1.6	57
30	Shieldin complex promotes DNA end-joining and counters homologous recombination in BRCA1-null cells. Nature Cell Biology, 2018, 20, 954-965.	4.6	291
31	Map of synthetic rescue interactions for the Fanconi anemia DNA repair pathway identifies USP48. Nature Communications, 2018, 9, 2280.	5.8	34
32	A novel somatic mutation achieves partial rescue in a child with Hutchinson-Gilford progeria syndrome. Journal of Medical Genetics, 2017, 54, 212-216.	1.5	28
33	Chromatin determinants impart camptothecin sensitivity. EMBO Reports, 2017, 18, 1000-1012.	2.0	18
34	PGBD5 promotes site-specific oncogenic mutations in human tumors. Nature Genetics, 2017, 49, 1005-1014.	9.4	69
35	ATM, ATR, and DNA-PK: The Trinity at the Heart of the DNA Damage Response. Molecular Cell, 2017, 66, 801-817.	4.5	1,319
36	Genetic variants associated with mosaic Y chromosome loss highlight cell cycle genes and overlap with cancer susceptibility. Nature Genetics, 2017, 49, 674-679.	9.4	117

#	Article	IF	CITATIONS
37	Targeting DNA Repair in Cancer: Beyond PARP Inhibitors. Cancer Discovery, 2017, 7, 20-37.	7.7	488
38	Parallel genome-wide screens identify synthetic viable interactions between the BLM helicase complex and Fanconi anemia. Nature Communications, 2017, 8, 1238.	5.8	25
39	Genome-wide genetic screening with chemically mutagenized haploid embryonic stem cells. Nature Chemical Biology, 2017, 13, 12-14.	3.9	36
40	CRISPR-Cas9D10A nickase-based genotypic and phenotypic screening to enhance genome editing. Scientific Reports, 2016, 6, 24356.	1.6	111
41	Specific Roles of XRCC4 Paralogs PAXX and XLF during V(D)J Recombination. Cell Reports, 2016, 16, 2967-2979.	2.9	70
42	G9a inhibition potentiates the anti-tumour activity of DNA double-strand break inducing agents by impairing DNA repair independent of p53 status. Cancer Letters, 2016, 380, 467-475.	3.2	37
43	Prelamin A impairs 53BP1 nuclear entry by mislocalizing NUP153 and disrupting the Ran gradient. Aging Cell, 2016, 15, 1039-1050.	3.0	48
44	Global genome nucleotide excision repair is organized into domains that promote efficient DNA repair in chromatin. Genome Research, 2016, 26, 1376-1387.	2.4	32
45	Synthetic lethality between PAXX and XLF in mammalian development. Genes and Development, 2016, 30, 2152-2157.	2.7	68
46	Different DNA End Configurations Dictate Which NHEJ Components Are Most Important for Joining Efficiency. Journal of Biological Chemistry, 2016, 291, 24377-24389.	1.6	83
47	Coordinated nuclease activities counteract Ku at single-ended DNA double-strand breaks. Nature Communications, 2016, 7, 12889.	5.8	113
48	Molecular Insights into Division of Single Human Cancer Cells in On-Chip Transparent Microtubes. ACS Nano, 2016, 10, 5835-5846.	7.3	31
49	Drugging DNA repair. Science, 2016, 352, 1178-1179.	6.0	71
50	Targeting BRCA1 and BRCA2 Deficiencies with G-Quadruplex-Interacting Compounds. Molecular Cell, 2016, 61, 449-460.	4.5	185
51	The N-terminal Region of Chromodomain Helicase DNA-binding Protein 4 (CHD4) Is Essential for Activity and Contains a High Mobility Group (HMG) Box-like-domain That Can Bind Poly(ADP-ribose). Journal of Biological Chemistry, 2016, 291, 924-938.	1.6	49
52	TRAIP promotes DNA damage response during genome replication and is mutated in primordial dwarfism. Nature Genetics, 2016, 48, 36-43.	9.4	74
53	USP4 Auto-Deubiquitylation Promotes Homologous Recombination. Molecular Cell, 2015, 60, 362-373.	4.5	67
54	Combinations of PARP Inhibitors with Temozolomide Drive PARP1 Trapping and Apoptosis in Ewing's Sarcoma. PLoS ONE, 2015, 10, e0140988.	1.1	72

#	Article	IF	CITATIONS
55	Synthetic viability genomic screening defines Sae2 function in DNA repair. EMBO Journal, 2015, 34, 1509-1522.	3.5	37
56	Ubiquitylation, neddylation and the DNA damage response. Open Biology, 2015, 5, 150018.	1.5	117
57	A high-throughput in vivo micronucleus assay for genome instability screening in mice. Nature Protocols, 2015, 10, 205-215.	5.5	61
58	PAXX, a paralog of XRCC4 and XLF, interacts with Ku to promote DNA double-strand break repair. Science, 2015, 347, 185-188.	6.0	252
59	CtIP tetramer assembly is required for DNA-end resection and repair. Nature Structural and Molecular Biology, 2015, 22, 150-157.	3.6	63
60	A flow cytometry–based method to simplify the analysis and quantification of protein association to chromatin in mammalian cells. Nature Protocols, 2015, 10, 1297-1307.	5.5	62
61	TopBP1 Interacts with BLM to Maintain Genome Stability but Is Dispensable for Preventing BLM Degradation. Molecular Cell, 2015, 57, 1133-1141.	4.5	59
62	Neddylation Promotes Ubiquitylation and Release of Ku from DNA-Damage Sites. Cell Reports, 2015, 11, 704-714.	2.9	107
63	Single-stranded DNA oligomers stimulate error-prone alternative repair of DNA double-strand breaks through hijacking Ku protein. Nucleic Acids Research, 2015, 43, gkv894.	6.5	14
64	Systematic E2 screening reveals a UBE2D–RNF138–CtIP axis promoting DNA repair. Nature Cell Biology, 2015, 17, 1458-1470.	4.6	90
65	When two is not enough: a CtIP tetramer is required for DNA repair by Homologous Recombination. Nucleus, 2015, 6, 344-348.	0.6	7
66	Ubiquitin regulates dissociation of DNA repair factors from chromatin. Oncotarget, 2015, 6, 14727-14728.	0.8	5
67	A quantitative 14-3-3 interaction screen connects the nuclear exosome targeting complex to the DNA damage response. Genes and Development, 2014, 28, 1977-1982.	2.7	50
68	Keeping 53BP1 out of focus in mitosis. Cell Research, 2014, 24, 781-782.	5.7	4
69	USP28 Is Recruited to Sites of DNA Damage by the Tandem BRCT Domains of 53BP1 but Plays a Minor Role in Double-Strand Break Metabolism. Molecular and Cellular Biology, 2014, 34, 2062-2074.	1.1	46
70	Transcriptionally active chromatin recruits homologous recombination at DNA double-strand breaks. Nature Structural and Molecular Biology, 2014, 21, 366-374.	3.6	536
71	Chemical Inhibition of NAT10 Corrects Defects of Laminopathic Cells. Science, 2014, 344, 527-532.	6.0	265
72	Rolled-up Functionalized Nanomembranes as Three-Dimensional Cavities for Single Cell Studies. Nano Letters, 2014, 14, 4197-4204.	4.5	65

#	Article	IF	CITATIONS
73	Confinement and Deformation of Single Cells and Their Nuclei Inside Sizeâ€Adapted Microtubes. Advanced Healthcare Materials, 2014, 3, 1753-1758.	3.9	26
74	Systematic characterization of deubiquitylating enzymes for roles in maintaining genome integrity. Nature Cell Biology, 2014, 16, 1016-1026.	4.6	134
75	CtIP-mediated resection is essential for viability and can operate independently of BRCA1. Journal of Experimental Medicine, 2014, 211, 1027-1036.	4.2	108
76	Cell Microenvironment: Confinement and Deformation of Single Cells and Their Nuclei Inside Size-Adapted Microtubes (Adv. Healthcare Mater. 11/2014). Advanced Healthcare Materials, 2014, 3, 1932-1932.	3.9	1
77	Deubiquitylating Enzymes and DNA Damage Response Pathways. Cell Biochemistry and Biophysics, 2013, 67, 25-43.	0.9	77
78	Regulation of DNA Damage Responses by Ubiquitin and SUMO. Molecular Cell, 2013, 49, 795-807.	4.5	522
79	On Your MARK, Get SET(D2), Go! H3K36me3 Primes DNA Mismatch Repair. Cell, 2013, 153, 513-515.	13.5	15
80	KAT5 tyrosine phosphorylation couples chromatin sensing to ATM signalling. Nature, 2013, 498, 70-74.	13.7	149
81	ATM-dependent phosphorylation of heterogeneous nuclear ribonucleoprotein K promotes p53 transcriptional activation in response to DNA damage. Cell Cycle, 2013, 12, 698-704.	1.3	53
82	Dma/RNF8 proteins are evolutionarily conserved E3 ubiquitin ligases that target septins. Cell Cycle, 2013, 12, 1000-1008.	1.3	29
83	Competing roles of DNA end resection and non-homologous end joining functions in the repair of replication-born double-strand breaks by sister-chromatid recombination. Nucleic Acids Research, 2013, 41, 1669-1683.	6.5	14
84	A new method for high-resolution imaging of Ku foci to decipher mechanisms of DNA double-strand break repair. Journal of Cell Biology, 2013, 202, 579-595.	2.3	218
85	Systematic Identification of Functional Residues in Mammalian Histone H2AX. Molecular and Cellular Biology, 2013, 33, 111-126.	1.1	54
86	RNF8 links nucleosomal and cytoskeletal ubiquitylation of higher order protein structures. Cell Cycle, 2013, 12, 1161-1161.	1.3	2
87	Disruption of Mouse Cenpj, a Regulator of Centriole Biogenesis, Phenocopies Seckel Syndrome. PLoS Genetics, 2012, 8, e1003022.	1.5	84
88	Chromothripsis and cancer: causes and consequences of chromosome shattering. Nature Reviews Cancer, 2012, 12, 663-670.	12.8	333
89	Regulation of DNA-End Resection by hnRNPU-like Proteins Promotes DNA Double-Strand Break Signaling and Repair. Molecular Cell, 2012, 45, 505-516.	4.5	160
90	Proteomic Investigations Reveal a Role for RNA Processing Factor THRAP3 in the DNA Damage Response. Molecular Cell, 2012, 46, 212-225.	4.5	298

#	Article	IF	CITATIONS
91	A highâ€throughput, flow cytometryâ€based method to quantify DNAâ€end resection in mammalian cells. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2012, 81A, 922-928.	1.1	67
92	Structure of Mre11–Nbs1 complex yields insights into ataxia-telangiectasia–like disease mutations and DNA damage signaling. Nature Structural and Molecular Biology, 2012, 19, 693-700.	3.6	108
93	BRCA1-associated exclusion of 53BP1 from DNA damage sites underlies temporal control of DNA repair. Journal of Cell Science, 2012, 125, 3529-3534.	1.2	280
94	Small-molecule–induced DNA damage identifies alternative DNA structures in human genes. Nature Chemical Biology, 2012, 8, 301-310.	3.9	576
95	RNF4, a SUMO-targeted ubiquitin E3 ligase, promotes DNA double-strand break repair. Genes and Development, 2012, 26, 1179-1195.	2.7	273
96	CDK targeting of NBS1 promotes DNAâ€end resection, replication restart and homologous recombination. EMBO Reports, 2012, 13, 561-568.	2.0	86
97	Histone marks: repairing DNA breaks within the context of chromatin. Biochemical Society Transactions, 2012, 40, 370-376.	1.6	74
98	A phospho-proteomic screen identifies substrates of the checkpoint kinase Chk1. Genome Biology, 2011, 12, R78.	13.9	123
99	Regulation of Rad51 function by phosphorylation. EMBO Reports, 2011, 12, 833-839.	2.0	53
100	Structure-Specific DNA Endonuclease Mus81/Eme1 Generates DNA Damage Caused by Chk1 Inactivation. PLoS ONE, 2011, 6, e23517.	1.1	97
101	Give me a break, but not in mitosis. Cell Cycle, 2011, 10, 1215-1221.	1.3	51
102	Replication stress induces 53BP1-containing OPT domains in G1 cells. Journal of Cell Biology, 2011, 193, 97-108.	2.3	284
103	Dynamics of DNA damage response proteins at DNA breaks: a focus on protein modifications. Genes and Development, 2011, 25, 409-433.	2.7	927
104	CtIP Mutations Cause Seckel and Jawad Syndromes. PLoS Genetics, 2011, 7, e1002310.	1.5	109
105	Human HDAC1 and HDAC2 function in the DNA-damage response to promote DNA nonhomologous end-joining. Nature Structural and Molecular Biology, 2010, 17, 1144-1151.	3.6	542
106	Regulation of DNA-damage responses and cell-cycle progression by the chromatin remodelling factor CHD4. EMBO Journal, 2010, 29, 3130-3139.	3.5	300
107	DNA damage signaling in response to double-strand breaks during mitosis. Journal of Cell Biology, 2010, 190, 197-207.	2.3	271

108 The PIKK Family of Protein Kinases. , 2010, , 575-580.

#	Article	IF	CITATIONS
109	Genome-Wide Reprogramming in the Mouse Germ Line Entails the Base Excision Repair Pathway. Science, 2010, 329, 78-82.	6.0	420
110	Human CtIP Mediates Cell Cycle Control of DNA End Resection and Double Strand Break Repair. Journal of Biological Chemistry, 2009, 284, 9558-9565.	1.6	420
111	The <i>Saccharomyces cerevisiae</i> Esc2 and Smc5-6 Proteins Promote Sister Chromatid Junction-mediated Intra-S Repair. Molecular Biology of the Cell, 2009, 20, 1671-1682.	0.9	92
112	MDM2-Dependent Downregulation of p21 and hnRNP K Provides a Switch between Apoptosis and Growth Arrest Induced by Pharmacologically Activated p53. Cancer Cell, 2009, 15, 171-183.	7.7	159
113	Screen for DNA-damage-responsive histone modifications identifies H3K9Ac and H3K56Ac in human cells. EMBO Journal, 2009, 28, 1878-1889.	3.5	288
114	The DNA-damage response in human biology and disease. Nature, 2009, 461, 1071-1078.	13.7	4,718
115	Mammalian SUMO E3-ligases PIAS1 and PIAS4 promote responses to DNA double-strand breaks. Nature, 2009, 462, 935-939.	13.7	461
116	A Supramodular FHA/BRCT-Repeat Architecture Mediates Nbs1 Adaptor Function in Response to DNA Damage. Cell, 2009, 139, 100-111.	13.5	157
117	Poly(ADP-ribose)–Dependent Regulation of DNA Repair by the Chromatin Remodeling Enzyme ALC1. Science, 2009, 325, 1240-1243.	6.0	504
118	The DNA-damage response: new molecular insights and new approaches to cancer therapy. Biochemical Society Transactions, 2009, 37, 483-494.	1.6	48
119	Phosphoâ€dependent interactions between NBS1 and MDC1 mediate chromatin retention of the MRN complex at sites of DNA damage. EMBO Reports, 2008, 9, 795-801.	2.0	248
120	CDK targets Sae2 to control DNA-end resection and homologous recombination. Nature, 2008, 455, 689-692.	13.7	402
121	Crystal structure of human XLF/Cernunnos reveals unexpected differences from XRCC4 with implications for NHEJ. EMBO Journal, 2008, 27, 290-300.	3.5	106
122	DNA helicases Sgs1 and BLM promote DNA double-strand break resection. Genes and Development, 2008, 22, 2767-2772.	2.7	498
123	Regulation of Histone H3 Lysine 56 Acetylation in Schizosaccharomyces pombe. Journal of Biological Chemistry, 2007, 282, 15040-15047.	1.6	70
124	Distinct domains in Nbs1 regulate irradiation-induced checkpoints and apoptosis. Journal of Experimental Medicine, 2007, 204, 1003-1011.	4.2	71
125	Yeast Rtt109 Promotes Genome Stability by Acetylating Histone H3 on Lysine 56. Science, 2007, 315, 649-652.	6.0	397
126	Distinct Roles of Chromatin-Associated Proteins MDC1 and 53BP1 in Mammalian Double-Strand Break Repair. Molecular Cell, 2007, 28, 1045-1057.	4.5	195

#	Article	IF	CITATIONS
127	Orchestration of the DNA-Damage Response by the RNF8 Ubiquitin Ligase. Science, 2007, 318, 1637-1640.	6.0	800
128	DNA damage response mediators MDC1 and 53BP1: constitutive activation and aberrant loss in breast and lung cancer, but not in testicular germ cell tumours. Oncogene, 2007, 26, 7414-7422.	2.6	105
129	Spreading of mammalian DNA-damage response factors studied by ChIP-chip at damaged telomeres. EMBO Journal, 2007, 26, 2707-2718.	3.5	84
130	Rad9 BRCT domain interaction with phosphorylated H2AX regulates the G1 checkpoint in budding yeast. EMBO Reports, 2007, 8, 851-857.	2.0	131
131	Human CtIP promotes DNA end resection. Nature, 2007, 450, 509-514.	13.7	1,158
132	The non-homologous end-joining protein Nej1p is a target of the DNA damage checkpoint. DNA Repair, 2007, 6, 190-201.	1.3	34
133	Distinct domains in Nbs1 regulate irradiation-induced checkpoints and apoptosis. Journal of Cell Biology, 2007, 177, i8-i8.	2.3	0
134	XLF Interacts with the XRCC4-DNA Ligase IV Complex to Promote DNA Nonhomologous End-Joining. Cell, 2006, 124, 301-313.	13.5	666
135	Structure of an Xrcc4–DNA ligase IV yeast ortholog complex reveals a novel BRCT interaction mode. DNA Repair, 2006, 5, 362-368.	1.3	60
136	γH2AX and MDC1: Anchoring the DNA-damage-response machinery to broken chromosomes. DNA Repair, 2006, 5, 534-543.	1.3	371
137	Double-strand breaks trigger MRX- and Mec1-dependent, but Tel1-independent, checkpoint activation. FEMS Yeast Research, 2006, 6, 836-847.	1.1	17
138	ATM- and cell cycle-dependent regulation of ATR in response to DNA double-strand breaks. Nature Cell Biology, 2006, 8, 37-45.	4.6	942
139	Rapid PIKK-Dependent Release of Chk1 from Chromatin Promotes the DNA-Damage Checkpoint Response. Current Biology, 2006, 16, 150-159.	1.8	166
140	Evolutionary and Functional Conservation of the DNA Non-homologous End-joining Protein, XLF/Cernunnos*. Journal of Biological Chemistry, 2006, 281, 37517-37526.	1.6	74
141	EDD Mediates DNA Damage-induced Activation of CHK2. Journal of Biological Chemistry, 2006, 281, 39990-40000.	1.6	51
142	Exploiting the DNA Repair Defect in BRCA Mutant Cells in the Design of New Therapeutic Strategies for Cancer. Cold Spring Harbor Symposia on Quantitative Biology, 2005, 70, 139-148.	2.0	172
143	Suppression of HIV-1 infection by a small molecule inhibitor of the ATM kinase. Nature Cell Biology, 2005, 7, 493-500.	4.6	135
144	Conserved modes of recruitment of ATM, ATR and DNA-PKcs to sites of DNA damage. Nature, 2005, 434, 605-611.	13.7	1,099

#	Article	IF	CITATIONS
145	Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature, 2005, 434, 917-921.	13.7	5,595
146	Yeast Nhp6A/B and Mammalian Hmgb1 Facilitate the Maintenance of Genome Stability. Current Biology, 2005, 15, 68-72.	1.8	84
147	Human cell senescence as a DNA damage response. Mechanisms of Ageing and Development, 2005, 126, 111-117.	2.2	383
148	Saccharomyces cerevisiae Histone H2A Ser122 Facilitates DNA Repair. Genetics, 2005, 170, 543-553.	1.2	49
149	Specific Association of Mouse MDC1/NFBD1 with NBS1 at Sites of DNA-Damage. Cell Cycle, 2005, 4, 177-182.	1.3	31
150	hnRNP K: An HDM2 Target and Transcriptional Coactivator of p53 in Response to DNA Damage. Cell, 2005, 123, 1065-1078.	13.5	305
151	MDC1 Directly Binds Phosphorylated Histone H2AX to Regulate Cellular Responses to DNA Double-Strand Breaks. Cell, 2005, 123, 1213-1226.	13.5	957
152	Functional links between telomeres and proteins of the DNA-damage response. Genes and Development, 2004, 18, 1781-1799.	2.7	244
153	Identification and Characterization of a Novel and Specific Inhibitor of the Ataxia-Telangiectasia Mutated Kinase ATM. Cancer Research, 2004, 64, 9152-9159.	0.4	1,089
154	p53 Prevents the Accumulation of Double-Strand DNA Breaks at Stalled-Replication Forks Induced by UV in Human Cells. Cell Cycle, 2004, 3, 1543-1557.	1.3	37
155	Saccharomyces cerevisiae Sin3p facilitates DNA double-strand break repair. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 1644-1649.	3.3	137
156	Separation-of-function Mutants of Yeast Ku80 Reveal a Yku80p-Sir4p Interaction Involved in Telomeric Silencing. Journal of Biological Chemistry, 2004, 279, 86-94.	1.6	84
157	Activation of the DNA Damage Response by Telomere Attrition: A Passage to Cellular Senescence. Cell Cycle, 2004, 3, 541-544.	1.3	61
158	Tudor domains track down DNA breaks. Nature Cell Biology, 2004, 6, 1150-1152.	4.6	15
159	A means to a DNA end: the many roles of Ku. Nature Reviews Molecular Cell Biology, 2004, 5, 367-378.	16.1	334
160	Mdc1 couples DNA double-strand break recognition by Nbs1 with its H2AX-dependent chromatin retention. EMBO Journal, 2004, 23, 2674-2683.	3.5	356
161	Suppression of retroviral infection by the RAD52 DNA repair protein. EMBO Journal, 2004, 23, 3421-3429.	3.5	67
162	MDC1/NFBD1: a key regulator of the DNA damage response in higher eukaryotes. DNA Repair, 2004, 3, 953-957.	1.3	99

#	Article	IF	CITATIONS
163	A Pathway of Double-Strand Break Rejoining Dependent upon ATM, Artemis, and Proteins Locating to Î ³ -H2AX Foci. Molecular Cell, 2004, 16, 715-724.	4.5	790
164	Binding of Chromatin-Modifying Activities to Phosphorylated Histone H2A at DNA Damage Sites. Molecular Cell, 2004, 16, 979-990.	4.5	513
165	ATM and ATR. Current Biology, 2003, 13, R468.	1.8	22
166	MDC1 is required for the intra-S-phase DNA damage checkpoint. Nature, 2003, 421, 952-956.	13.7	472
167	A DNA damage checkpoint response in telomere-initiated senescence. Nature, 2003, 426, 194-198.	13.7	2,381
168	The Gam protein of bacteriophage Mu is an orthologue of eukaryotic Ku. EMBO Reports, 2003, 4, 47-52.	2.0	76
169	Protective packaging for DNA. Nature, 2003, 424, 732-734.	13.7	21
170	Increased Genome Instability in Aging Yeast. Cell, 2003, 115, 1-2.	13.5	13
171	A Heterotrimeric PCNA in the Hyperthermophilic Archaeon Sulfolobus solfataricus. Molecular Cell, 2003, 11, 275-282.	4.5	215
172	Suppression of Homologous Recombination by the Saccharomyces cerevisiae Linker Histone. Molecular Cell, 2003, 11, 1685-1692.	4.5	153
173	Double-Strand Break Recognition and Its Repair by Nonhomologous End Joining. , 2003, , 219-224.		0
174	The PIKK Family of Protein Kinases. , 2003, , 557-561.		7
175	Structural Basis for the NAD-dependent Deacetylase Mechanism of Sir2. Journal of Biological Chemistry, 2002, 277, 34489-34498.	1.6	84
176	Sensing and repairing DNA double-strand breaks. Carcinogenesis, 2002, 23, 687-696.	1.3	927
177	Screening the yeast genome for new DNA-repair genes. Genome Biology, 2002, 3, reviews1009.1.	13.9	13
178	The Interaction of Alba, a Conserved Archaeal Chromatin Protein, with Sir2 and Its Regulation by Acetylation. Science, 2002, 296, 148-151.	6.0	271
179	The FHA domain. FEBS Letters, 2002, 513, 58-66.	1.3	358
180	Lcd1p Recruits Mec1p to DNA Lesions In Vitro and In Vivo. Molecular Cell, 2002, 9, 857-869.	4.5	169

#	Article	IF	CITATIONS
181	Structural and Functional Versatility of the FHA Domain in DNA-Damage Signaling by the Tumor Suppressor Kinase Chk2. Molecular Cell, 2002, 9, 1045-1054.	4.5	207
182	Identification of a DNA Nonhomologous End-Joining Complex in Bacteria. Science, 2002, 297, 1686-1689.	6.0	284
183	The MRE11 complex: at the crossroads of DNA repair and checkpoint signalling. Nature Reviews Molecular Cell Biology, 2002, 3, 317-327.	16.1	778
184	Interfaces Between the Detection, Signaling, and Repair of DNA Damage. Science, 2002, 297, 547-551.	6.0	650
185	The archaeal TFIIEα homologue facilitates transcription initiation by enhancing TATAâ€box recognition. EMBO Reports, 2001, 2, 133-138.	2.0	86
186	Crystal structure of an Xrcc4-DNA ligase IV complex. Nature Structural Biology, 2001, 8, 1015-1019.	9.7	229
187	Mechanism and regulation of transcription in archaea. Current Opinion in Microbiology, 2001, 4, 208-213.	2.3	191
188	Identification of bacterial homologues of the Ku DNA repair proteins. FEBS Letters, 2001, 500, 186-188.	1.3	124
189	Basal and regulated transcription in Archaea. Biochemical Society Transactions, 2001, 29, 392-395.	1.6	61
190	Telomerase subunit overexpression suppresses telomereâ€specific checkpoint activation in the yeast yku80 mutant. EMBO Reports, 2001, 2, 197-202.	2.0	49
191	DNA double-strand breaks: signaling, repair and the cancer connection. Nature Genetics, 2001, 27, 247-254.	9.4	2,116
192	Disruption of Trrap causes early embryonic lethality and defects in cell cycle progression. Nature Genetics, 2001, 29, 206-211.	9.4	122
193	ATM, a central controller of cellular responses to DNA damage. Cell Death and Differentiation, 2001, 8, 1052-1065.	5.0	220
194	Effects of DNA nonhomologous end-joining factors on telomere length and chromosomal stability in mammalian cells. Current Biology, 2001, 11, 1192-1196.	1.8	260
195	DNA repair: How Ku makes ends meet. Current Biology, 2001, 11, R920-R924.	1.8	95
196	DNA-PK, ATM and ATR as sensors of DNA damage: variations on a theme?. Current Opinion in Cell Biology, 2001, 13, 225-231.	2.6	457
197	Identification of a Conserved Archaeal RNA Polymerase Subunit Contacted by the Basal Transcription Factor TFB. Journal of Biological Chemistry, 2001, 276, 46693-46696.	1.6	35
198	The yeast Xrs2 complex functions in S phase checkpoint regulation. Genes and Development, 2001, 15, 2238-2249.	2.7	194

#	Article	IF	CITATIONS
199	A Role for TAF3B2 in the Repression of Human RNA Polymerase III Transcription in Nonproliferating Cells. Journal of Biological Chemistry, 2001, 276, 21158-21165.	1.6	11
200	Detecting, signalling and repairing DNA double-strand breaks. Biochemical Society Transactions, 2001, 29, 655-61.	1.6	56
201	Comparison of DNA repair protein expression and activities between human fibroblast cell lines with different radiosensitivities. , 2000, 85, 845-849.		34
202	Charting a course through RNA polymerase. , 2000, 7, 703-705.		123
203	A role for Saccharomyces cerevisiae histone H2A in DNA repair. Nature, 2000, 408, 1001-1004.	13.7	598
204	Lif1p targets the DNA ligase Lig4p to sites of DNA double-strand breaks. Current Biology, 2000, 10, 165-168.	1.8	96
205	LCD1: an essential gene involved in checkpoint control and regulation of the MEC1 signalling pathway in Saccharomyces cerevisiae. EMBO Journal, 2000, 19, 5801-5812.	3.5	123
206	Mechanism of Autoregulation by an Archaeal Transcriptional Repressor. Journal of Biological Chemistry, 2000, 275, 31624-31629.	1.6	83
207	Expression of Ku70 correlates with survival in carcinoma of the cervix. British Journal of Cancer, 2000, 83, 1702-1706.	2.9	92
208	The Role of Transcription Factor B in Transcription Initiation and Promoter Clearance in the Archaeon Sulfolobus acidocaldarius. Journal of Biological Chemistry, 2000, 275, 12934-12940.	1.6	63
209	The Molecular Basis of FHA Domain:Phosphopeptide Binding Specificity and Implications for Phospho-Dependent Signaling Mechanisms. Molecular Cell, 2000, 6, 1169-1182.	4.5	412
210	Comparison of DNA repair protein expression and activities between human fibroblast cell lines with different radiosensitivities. International Journal of Cancer, 2000, 85, 845.	2.3	1
211	Expression and nuclear localization of BLM, a chromosome stability protein mutated in Bloom's syndrome, suggest a role in recombination during meiotic prophase. Journal of Cell Science, 2000, 113, 663-672.	1.2	83
212	7 DNA-dependent protein kinase and related proteins. , 1999, , 91-104.		23
213	Purification and DNA binding properties of the ataxia-telangiectasia gene product ATM. Proceedings of the United States of America, 1999, 96, 11134-11139.	3.3	157
214	Orientation of the transcription preinitiation complex in Archaea. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 13662-13667.	3.3	149
215	Functions of poly(ADP-ribose) polymerase in controlling telomere length and chromosomal stability. Nature Genetics, 1999, 23, 76-80.	9.4	218
216	Regulation of p53 in response to DNA damage. Oncogene, 1999, 18, 7644-7655.	2.6	873

#	Article	IF	CITATIONS
217	The association of ATR protein with mouse meiotic chromosome cores. Chromosoma, 1999, 108, 95-102.	1.0	89
218	DNA double-strand break repair. Current Biology, 1999, 9, R759-R761.	1.8	154
219	Identification of a defect in DNA ligase IV in a radiosensitive leukaemia patient. Current Biology, 1999, 9, 699-S2.	1.8	361
220	DNA damage triggers disruption of telomeric silencing and Mec1p-dependent relocation of Sir3p. Current Biology, 1999, 9, 963-S1.	1.8	113
221	Transcriptional Regulation of an Archaeal Operon In Vivo and In Vitro. Molecular Cell, 1999, 4, 971-982.	4.5	105
222	The FHA Domain Is a Modular Phosphopeptide Recognition Motif. Molecular Cell, 1999, 4, 387-394.	4.5	368
223	Ku, a DNA repair protein with multiple cellular functions?. Mutation Research DNA Repair, 1999, 434, 3-15.	3.8	242
224	The ataxia-telangiectasia related protein ATR mediates DNA-dependent phosphorylation of p53. Oncogene, 1999, 18, 3989-3995.	2.6	120
225	Cleavage and Inactivation of ATM during Apoptosis. Molecular and Cellular Biology, 1999, 19, 6076-6084.	1.1	95
226	Involvement of DNA End-Binding Protein Ku in Ty Element Retrotransposition. Molecular and Cellular Biology, 1999, 19, 6260-6268.	1.1	68
227	The DNA-dependent protein kinase. Genes and Development, 1999, 13, 916-934.	2.7	760
228	Components of the Ku-dependent non-homologous end-joining pathway are involved in telomeric length maintenance and telomeric silencing. EMBO Journal, 1998, 17, 1819-1828.	3.5	590
229	DNA repair: The Nijmegen breakage syndrome protein. Current Biology, 1998, 8, R622-R625.	1.8	49
230	DNA end-joining: from yeast to man. Trends in Biochemical Sciences, 1998, 23, 394-398.	3.7	541
231	Transcription and translation in Archaea: a mosaic of eukaryal and bacterial features. Trends in Microbiology, 1998, 6, 222-228.	3.5	182
232	Targeted Disruption of the Catalytic Subunit of the DNA-PK Gene in Mice Confers Severe Combined Immunodeficiency and Radiosensitivity. Immunity, 1998, 9, 355-366.	6.6	301
233	Sequence-Specific DNA Binding by the S. shibatae TFIIB Homolog, TFB, and Its Effect on Promoter Strength. Molecular Cell, 1998, 1, 389-400.	4.5	125
234	Fanconi anemia C gene product plays a role in the fidelity of blunt DNA end-joining. Journal of Molecular Biology, 1998, 279, 375-385.	2.0	75

#	Article	IF	CITATIONS
235	Characterization of the Residues Phosphorylated in Vitro by Different C-terminal Domain Kinases. Journal of Biological Chemistry, 1998, 273, 6769-6775.	1.6	106
236	Human and mouse homologs of <i>Schizosaccharomyces pombe rad1</i> ⁺ and <i>Saccharomyces cerevisiae RAD17:</i> linkage to checkpoint control and mammalian meiosis. Genes and Development, 1998, 12, 2560-2573.	2.7	100
237	DNA end-independent activation of DNA-PK mediated via association with the DNA-binding protein C1D. Genes and Development, 1998, 12, 2188-2199.	2.7	71
238	Molecular and biochemical characterisation of DNA-dependent protein kinase-defective rodent mutant irs-20. Nucleic Acids Research, 1998, 26, 1965-1973.	6.5	74
239	Temperature, template topology, and factor requirements of archaeal transcription. Proceedings of the United States of America, 1998, 95, 15218-15222.	3.3	72
240	Molecular and Biochemical Characterization of <i>xrs</i> Mutants Defective in Ku80. Molecular and Cellular Biology, 1997, 17, 1264-1273.	1.1	171
241	Chromosomes and expression mechanisms. Current Opinion in Genetics and Development, 1997, 7, 149-151.	1.5	3
242	DNA-dependent protein kinase. International Journal of Biochemistry and Cell Biology, 1997, 29, 935-938.	1.2	103
243	Genetic interaction between PARP and DNA-PK in V(D)J recombination and tumorigenesis. Nature Genetics, 1997, 17, 479-482.	9.4	173
244	Silencing and DNA repair connect. Nature, 1997, 388, 829-830.	13.7	22
245	Mammalian DNA double-strand break repair protein XRCC4 interacts with DNA ligase IV. Current Biology, 1997, 7, 588-598.	1.8	422
246	Factor requirements for transcription in the Archaeon Sulfolobus shibatae. EMBO Journal, 1997, 16, 2927-2936.	3.5	129
247	Identification of Saccharomyces cerevisiae DNA ligase IV: involvement in DNA double-strand break repair. EMBO Journal, 1997, 16, 4788-4795.	3.5	236
248	Mechanistic analysis of RNA polymerase III regulation by the retinoblastoma protein. EMBO Journal, 1997, 16, 2061-2071.	3.5	93
249	The Crystal Structure of a Hyperthermophilic Archaeal TATA-box Binding Protein. Journal of Molecular Biology, 1996, 264, 1072-1084.	2.0	159
250	The recognition of DNA damage. Current Opinion in Genetics and Development, 1996, 6, 19-25.	1.5	77
251	An archaebacterial homologue of the essential eubacterial cell division protein FtsZ Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 6726-6730.	3.3	69
252	Identification of a nonsense mutation in the carboxyl-terminal region of DNA-dependent protein kinase catalytic subunit in the scid mouse Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 10285-10290.	3.3	322

#	Article	IF	CITATIONS
253	Expression of DNA-Dependent Protein Kinase Holoenzyme Upon Induction of Lymphocyte Differentiation and V(D)J Recombination. FEBS Journal, 1996, 241, 931-940.	0.2	49
254	Lack of detectable defect in DNA double-strand break repair and DNA-dependent protein kinase activity in radiosensitive human severe combined immunodeficiency fibroblasts. European Journal of Immunology, 1996, 26, 1118-1122.	1.6	49
255	Repression of RNA polymerase III transcription by the retinoblastoma protein. Nature, 1996, 382, 88-90.	13.7	204
256	Identification of a Saccharomyces cerevisiae Ku80 homologue: roles in DNA double strand break rejoining and in telomeric maintenance. Nucleic Acids Research, 1996, 24, 4639-4648.	6.5	431
257	Identification of the Catalytic Subunit of DNA Dependent Protein Kinase as the Product of the Mouse scid Gene. Current Topics in Microbiology and Immunology, 1996, 217, 79-89.	0.7	13
258	Gene for the catalytic subunit of the human DNA-activated protein kinase maps to the site of the XRCC7 gene on chromosome 8 Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 7515-7519.	3.3	98
259	DNA-dependent protein kinase activity is absent in xrs-6 cells: implications for site-specific recombination and DNA double-strand break repair Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 320-324.	3.3	324
260	Mitotic Regulation of a TATA-Binding-Protein-Containing Complex. Molecular and Cellular Biology, 1995, 15, 1983-1992.	1.1	105
261	Cell Cycle Regulation of RNA Polymerase III Transcription. Molecular and Cellular Biology, 1995, 15, 6653-6662.	1.1	95
262	Cancer Predisposition: Ataxia–telangiectasia at the crossroads. Current Biology, 1995, 5, 1210-1212.	1.8	56
263	DNA double-strand break repair and V(D)J recombination: involvement of DNA-PK. Trends in Biochemical Sciences, 1995, 20, 412-415.	3.7	343
264	Menage Ã; trois: Double strand break repair, V(D)J recombination and DNA-PK. BioEssays, 1995, 17, 949-957.	1.2	237
265	Extraordinary sequence conservation of the PRP8 splicing factor. Yeast, 1995, 11, 337-342.	0.8	62
266	DNA-dependent protein kinase: a potent inhibitor of transcription by RNA polymerase I Genes and Development, 1995, 9, 193-203.	2.7	121
267	Defective DNA-dependent protein kinase activity is linked to V(D)J recombination and DNA repair defects associated with the murine scid mutation. Cell, 1995, 80, 813-823.	13.5	809
268	DNA-dependent protein kinase catalytic subunit: A relative of phosphatidylinositol 3-kinase and the ataxia telangiectasia gene product. Cell, 1995, 82, 849-856.	13.5	712
269	A YAC Contig Encompassing the XRCC5 (Ku80) DNA Repair Gene and Complementation of Defective Cells by YAC Protoplast Fusion. Genomics, 1995, 30, 320-328.	1.3	13
270	The TATA-binding protein: a general transcription factor in eukaryotes and archaebacteria. Science, 1994, 264, 1326-1329.	6.0	190

#	Article	IF	CITATIONS
271	Ku80: product of the XRCC5 gene and its role in DNA repair and V(D)J recombination. Science, 1994, 265, 1442-1445.	6.0	624
272	Conserved functional domains of the RNA polymerase III general transcription factor BRF Genes and Development, 1994, 8, 2879-2890.	2.7	121
273	MPSA short communications. The Protein Journal, 1994, 13, 431-512.	1.1	0
274	Protein kinases and DNA damage. Trends in Biochemical Sciences, 1994, 19, 500-503.	3.7	53
275	The DNA-dependent protein kinase: Requirement for DNA ends and association with Ku antigen. Cell, 1993, 72, 131-142.	13.5	1,136
276	c-Jun is phosphorylated by the DNA-dependent protein kinasein vitro; definition of the minimal kinase recognition motif. Nucleic Acids Research, 1993, 21, 1289-1295.	6.5	110
277	Transcription factor phosphorylation by the DNA-dependent protein kinase. Biochemical Society Transactions, 1993, 21, 930-935.	1.6	29
278	A role for the TATA-box-binding protein component of the transcription factor IID complex as a general RNA polymerase III transcription factor Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 1949-1953.	3.3	142
279	The TATA-binding protein is a general transcription factor for RNA polymerase III. Journal of Cell Science, 1992, 1992, 1-7.	1.2	17
280	Mechanism of TATA-binding protein recruitment to a TATA-less class III promoter. Cell, 1992, 71, 1041-1053.	13.5	138
281	Regulating transcription factor activity by phosphorylation. Trends in Cell Biology, 1992, 2, 104-108.	3.6	121
282	The TATA-binding protein: a central role in transcription by RNA polymerases I, II and III. Trends in Genetics, 1992, 8, 284-288.	2.9	104
283	Direct interaction between Sp1 and the BPV enhancer E2 protein mediates synergistic activation of transcription. Cell, 1991, 65, 493-505.	13.5	350
284	DNA looping and Sp1 multimer links: a mechanism for transcriptional synergism and enhancement Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 5670-5674.	3.3	240
285	DNA looping between sites for transcriptional activation: self-association of DNA-bound Sp1 Genes and Development, 1991, 5, 820-826.	2.7	354
286	SV40 stimulates expression of the transacting factor Sp1 at the mRNA level Genes and Development, 1990, 4, 659-666.	2.7	133
287	GC box binding induces phosphorylation of Sp1 by a DNA-dependent protein kinase. Cell, 1990, 63, 155-165.	13.5	683
288	Purification and analysis of RNA polymerase II transcription factors by using wheat germ agglutinin affinity chromatography Proceedings of the National Academy of Sciences of the United States of America, 1989, 86, 1781-1785.	3.3	184

#	Article	IF	CITATIONS
289	Synergistic activation by the glutamine-rich domains of human transcription factor Sp1. Cell, 1989, 59, 827-836.	13.5	560
290	O-glycosylation of eukaryotic transcription factors: Implications for mechanisms of transcriptional regulation. Cell, 1988, 55, 125-133.	13.5	899