Adrian T Saurin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2068060/publications.pdf

Version: 2024-02-01

201674 315739 2,693 37 27 38 citations h-index g-index papers 46 46 46 3467 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	CDK4/6 inhibitors induce replication stress to cause longâ€ŧerm cell cycle withdrawal. EMBO Journal, 2022, 41, e108599.	7.8	48
2	Cyclin B1 scaffolds <scp>MAD</scp> 1 at the kinetochore corona to activate the mitotic checkpoint. EMBO Journal, 2020, 39, e103180.	7.8	49
3	Kinetochore phosphatases suppress autonomous Polo-like kinase 1 activity to control the mitotic checkpoint. Journal of Cell Biology, 2020, 219, .	5.2	28
4	PP1 and PP2A Use Opposite Phospho-dependencies to Control Distinct Processes at the Kinetochore. Cell Reports, 2019, 28, 2206-2219.e8.	6.4	43
5	The Enemy Within., 2019,,.		1
6	Division of labour between PP2A-B56 isoforms at the centromere and kinetochore. ELife, 2019, 8, .	6.0	38
7	USP9X Limits Mitotic Checkpoint Complex Turnover to Strengthen the Spindle Assembly Checkpoint and Guard against Chromosomal Instability. Cell Reports, 2018, 23, 852-865.	6.4	27
8	Exploring the Function of Dynamic Phosphorylation-Dephosphorylation Cycles. Developmental Cell, 2018, 44, 659-663.	7.0	46
9	The Importance of Kinase–Phosphatase Integration: Lessons from Mitosis. Trends in Cell Biology, 2018, 28, 6-21.	7.9	85
10	The live cell DNA stain SiR-Hoechst induces DNA damage responses and impairs cell cycle progression. Scientific Reports, 2018, 8, 7898.	3.3	25
11	Kinase and Phosphatase Cross-Talk at the Kinetochore. Frontiers in Cell and Developmental Biology, 2018, 6, 62.	3.7	111
12	The responses of cancer cells to PLK1 inhibitors reveal a novel protective role for p53 in maintaining centrosome separation. Scientific Reports, 2017, 7, 16115.	3.3	27
13	Studying Kinetochore Kinases. Methods in Molecular Biology, 2016, 1413, 333-347.	0.9	6
14	Mitotic kinases and phosphatases cooperate to shape the right response. Cell Cycle, 2015, 14, 795-796.	2.6	5
15	Negative feedback at kinetochores underlies aÂresponsive spindle checkpoint signal. Nature Cell Biology, 2014, 16, 1257-1264.	10.3	181
16	Distinct phosphatases antagonize the p53 response in different phases of the cell cycle. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 7313-7318.	7.1	73
17	Nuclear translocation of Cyclin B1 marks the restriction point for terminal cell cycle exit in G2 phase. Cell Cycle, 2014, 13, 2733-2743.	2.6	60
18	Conditional targeting of MAD1 to kinetochores is sufficient to reactivate the spindle assembly checkpoint in metaphase. Chromosoma, 2014, 123, 471-480.	2.2	35

#	Article	IF	CITATIONS
19	Assessing Kinetics from Fixed Cells Reveals Activation of the Mitotic Entry Network at the S/G2 Transition. Molecular Cell, 2014, 53, 843-853.	9.7	65
20	Mps1 promotes rapid centromere accumulation of Aurora B. EMBO Reports, 2012, 13, 847-854.	4.5	74
21	mTORC2 targets AGC kinases through Sin1-dependent recruitment. Biochemical Journal, 2011, 439, 287-297.	3.7	74
22	Aurora B potentiates Mps1 activation to ensure rapid checkpoint establishment at the onset of mitosis. Nature Communications, 2011, 2, 316.	12.8	193
23	Finding the middle ground: how kinetochores power chromosome congression. Cellular and Molecular Life Sciences, 2010, 67, 2145-2161.	5.4	52
24	Protein kinase C epsilon in cell division: Control of abscission. Cell Cycle, 2009, 8, 549-555.	2.6	16
25	Recognition of an intraâ€chain tandem 14â€3â€3 binding site within PKCε. EMBO Reports, 2009, 10, 983-989.	4.5	86
26	PKC maturation is promoted by nucleotide pocket occupation independently of intrinsic kinase activity. Nature Structural and Molecular Biology, 2009, 16, 624-630.	8.2	125
27	The regulated assembly of a PKCÉ> complex controls the completion of cytokinesis. Nature Cell Biology, 2008, 10, 891-901.	10.3	113
28	The Scaffold MyD88 Acts to Couple Protein Kinase Cϵ to Toll-like Receptors. Journal of Biological Chemistry, 2008, 283, 18591-18600.	3.4	46
29	The identification and characterization of novel PKCϵ phosphorylation sites provide evidence for functional cross-talk within the PKC superfamily. Biochemical Journal, 2008, 411, 319-331.	3.7	35
30	Protein kinases, from B to C. Biochemical Society Transactions, 2007, 35, 1013-1017.	3.4	39
31	Altered cleavage and localization of PINK1 to aggresomes in the presence of proteasomal stress. Journal of Neurochemistry, 2006, 98, 156-169.	3.9	146
32	Widespread sulfenic acid formation in tissues in response to hydrogen peroxide. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 17982-17987.	7.1	268
33	Diverse Mechanisms of Myocardial p38 Mitogen-Activated Protein Kinase Activation. Circulation Research, 2003, 93, 254-261.	4.5	126
34	Targeted disruption of the protein kinase C epsilon gene abolishes the infarct size reduction that follows ischaemic preconditioning of isolated buffer-perfused mouse hearts. Cardiovascular Research, 2002, 55, 672-680.	3.8	124
35	Role of G Proteins and Modulation of p38 MAPK Activation in the Protection by Nitric Oxide against Ischemia–Reoxygenation Injury. Biochemical and Biophysical Research Communications, 2001, 286, 995-1002.	2.1	27
36	Therapeutic potential of ischaemic preconditioning. British Journal of Clinical Pharmacology, 2000, 50, 87-97.	2.4	24

ADRIAN T SAURIN

#	Article	IF	CITATIONS
37	The role of differential activation of p38â€mitogenâ€activated protein kinase in preconditioned ventricular myocytes. FASEB Journal, 2000, 14, 2237-2246.	0.5	152