Kishore B S Pasumarthi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2067982/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
2	Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature, 2004, 428, 664-668.	27.8	2,050
3	Cardiomyocyte Cell Cycle Regulation. Circulation Research, 2002, 90, 1044-1054.	4.5	434
4	Targeted Expression of Cyclin D2 Results in Cardiomyocyte DNA Synthesis and Infarct Regression in Transgenic Mice. Circulation Research, 2005, 96, 110-118.	4.5	309
5	Scalable Production of Embryonic Stem Cell-Derived Cardiomyocytes. Tissue Engineering, 2003, 9, 767-778.	4.6	271
6	Myocyte and myogenic stem cell transplantation in the heart. Cardiovascular Research, 2003, 58, 336-350.	3.8	222
7	Physiological Coupling of Donor and Host Cardiomyocytes After Cellular Transplantation. Circulation Research, 2003, 92, 1217-1224.	4.5	213
8	High and Low Molecular Weight Fibroblast Growth Factor-2 Increase Proliferation of Neonatal Rat Cardiac Myocytes but Have Differential Effects on Binucleation and Nuclear Morphology. Circulation Research, 1996, 78, 126-136.	4.5	111
9	Cardiomyocyte cell cycle activation improves cardiac function after myocardial infarction. Cardiovascular Research, 2008, 78, 18-25.	3.8	109
10	Simian Virus 40 Large T Antigen Binds a Novel Bcl-2 Homology Domain 3-containing Proapoptosis Protein in the Cytoplasm. Journal of Biological Chemistry, 2000, 275, 3239-3246.	3.4	66
11	The FGF-2-triggered protection of cardiac subsarcolemmal mitochondria from calcium overload is mitochondrial connexin 43-dependent. Cardiovascular Research, 2014, 103, 72-80.	3.8	63
12	Enhanced Cardiomyocyte DNA Synthesis During Myocardial Hypertrophy in Mice Expressing a Modified TSC2 Transgene. Circulation Research, 2000, 86, 1069-1077.	4.5	58
13	Cardiomyocyte Specific Ablation of p53 Is Not Sufficient to Block Doxorubicin Induced Cardiac Fibrosis and Associated Cytoskeletal Changes. PLoS ONE, 2011, 6, e22801.	2.5	54
14	Cloning and Expression of Fibroblast Growth Factor Receptor-1 Isoforms in the Mouse Heart: Evidence for Isoform Switching During Heart Development. Journal of Molecular and Cellular Cardiology, 1994, 26, 1449-1459.	1.9	52
15	Over-expression of CUG- or AUG-initiated Forms of Basic Fibroblast Growth Factor in Cardiac Myocytes Results in Similar Effects on Mitosis and Protein Synthesis but Distinct Nuclear Morphologies. Journal of Molecular and Cellular Cardiology, 1994, 26, 1045-1060.	1.9	51
16	Regulation of Basic Fibroblast Growth Factor (BFGF) and FGF Receptors in the Heart. Annals of the New York Academy of Sciences, 1995, 752, 353-369.	3.8	39
17	Coexpression of Mutant p53 and p193 Renders Embryonic Stem Cell–Derived Cardiomyocytes Responsive to the Growth-Promoting Activities of Adenoviral E1A. Circulation Research, 2001, 88, 1004-1011.	4.5	39
10	Embruonic Stom Coll Transplantation RioDrugs 2008 22 361 374	4.6	

18 Embryonic Stem Cell Transplantation. BioDrugs, 2008, 22, 361-374.

4.6 37

#	Article	IF	CITATIONS
19	Donor cell transplantation for myocardial disease: does it complement current pharmacological therapies?This paper is one of a selection of papers published in this Special Issue, entitled Young Investigators' Forum Canadian Journal of Physiology and Pharmacology, 2007, 85, 1-15.	1.4	31
20	Cardiomyocyte Cell Cycle Activation Ameliorates Fibrosis in the Atrium. Circulation Research, 2006, 98, 141-148.	4.5	28
21	Ultrastructural and immunocharacterization of undifferentiated myocardial cells in the developing mouse heart. Journal of Cellular and Molecular Medicine, 2007, 11, 552-560.	3.6	26
22	QUANTIFICATION OF CARDIAC FIBROSIS BY COLOURâ€6UBTRACTIVE COMPUTERâ€ASSISTED IMAGE ANALYSIS. Clinical and Experimental Pharmacology and Physiology, 2008, 35, 679-686.	1.9	26
23	Role of D-type cyclins in heart development and disease. Canadian Journal of Physiology and Pharmacology, 2012, 90, 1197-1207.	1.4	22
24	Functional Abrogation of p53 is Required for T-Ag Induced Proliferation in Cardiomyocytes. Journal of Molecular and Cellular Cardiology, 2001, 33, 1405-1419.	1.9	21
25	Cloning of the Rat Fibroblast Growth Factor-2 Promoter Region and Its Response to Mitogenic Stimuli in Glioma C6 Cells. Journal of Neurochemistry, 2002, 68, 898-908.	3.9	21
26	Cell cycle regulation to repair the infarcted myocardium. Heart Failure Reviews, 2003, 8, 293-303.	3.9	20
27	A novel β-adrenergic response element regulates both basal and agonist-induced expression of cyclin-dependent kinase 1 gene in cardiac fibroblasts. American Journal of Physiology - Cell Physiology, 2014, 306, C540-C550.	4.6	19
28	A splice variant of cyclin D2 regulates cardiomyocyte cell cycle through a novel protein aggregation pathway. Journal of Cell Science, 2009, 122, 1563-1573.	2.0	18
29	Cardiomyocyte Enrichment in Differentiating ES Cell Cultures: Strategies and Applications. , 2002, 185, 157-168.		17
30	Atrial natriuretic peptide inhibits cell cycle activity of embryonic cardiac progenitor cells via its NPRA receptor signaling axis. American Journal of Physiology - Cell Physiology, 2015, 308, C557-C569.	4.6	17
31	Effects of Î ² -adrenergic receptor drugs on embryonic ventricular cell proliferation and differentiation and their impact on donor cell transplantation. American Journal of Physiology - Heart and Circulatory Physiology, 2017, 312, H919-H931.	3.2	17
32	Title is missing!. Molecular and Cellular Biochemistry, 1997, 176, 89-97.	3.1	16
33	The effects of calcium channel blockade on proliferation and differentiation of cardiac progenitor cells. Cell Calcium, 2014, 55, 238-251.	2.4	15
34	Mechanisms of renal hyporesponsiveness to BNP in heart failure. Canadian Journal of Physiology and Pharmacology, 2015, 93, 399-403.	1.4	15
35	Characterization of Growth Suppressive Functions of a Splice Variant of Cyclin D2. PLoS ONE, 2013, 8, e53503.	2.5	15
36	Functional characterization of cardiac progenitor cells and their derivatives in the embryonic heart postâ€chamber formation. Developmental Dynamics, 2009, 238, 2787-2799.	1.8	14

#	Article	IF	CITATIONS
37	A natriuretic peptides clearance receptor's agonist reduces pulmonary artery pressures and enhances cardiac performance in preclinical models: New hope for patients with pulmonary hypertension due to left ventricular heart failure. Biomedicine and Pharmacotherapy, 2017, 93, 1144-1150.	5.6	12
38	Characterization of Fibroblast Growth Factor Receptor 1 RNA Expression in the Embryonic Mouse Heart. Annals of the New York Academy of Sciences, 1995, 752, 406-416.	3.8	10
39	Divergent cell cycle kinetics of midgestation ventricular cells entail a higher engraftment efficiency after cell transplantation. American Journal of Physiology - Cell Physiology, 2015, 308, C220-C228.	4.6	9
40	Characterizing the role of atrial natriuretic peptide signaling in the development of embryonic ventricular conduction system. Scientific Reports, 2018, 8, 6939.	3.3	9
41	Regulation of Transplanted Cell Homing by FGF1 and PDGFB after Doxorubicin Myocardial Injury. Cells, 2021, 10, 2998.	4.1	6
42	A mouse model of inherited choline kinase β-deficiency presents with specific cardiac abnormalities and a predisposition to arrhythmia. Journal of Biological Chemistry, 2022, 298, 101716.	3.4	4
43	Reactivation of cardiomyocyte cell cycle: A potential approach for myocardial regeneration. Signal Transduction, 2005, 5, 126-141.	0.4	3
44	Assessment of embryonic myocardial cell differentiation using a dual fluorescent reporter system. Journal of Cellular and Molecular Medicine, 2009, 13, 2834-2842.	3.6	3
45	Fractionation of embryonic cardiac progenitor cells and evaluation of their differentiation potential. Differentiation, 2019, 105, 1-13.	1.9	3
46	Developmental expression of the cyclin D2 splice variant in postnatal Purkinje cells of the mouse cerebellum. Neuroscience Letters, 2010, 477, 100-104.	2.1	2
47	A8. Molecular characterization of cardiac progenitor cells in embryonic ventricular myocardium. Journal of Molecular and Cellular Cardiology, 2006, 40, 887-888.	1.9	1
48	A Cardiac Mitochondrial FGFR1 Mediates the Antithetical Effects of FGF2 Isoforms on Permeability Transition. Cells, 2021, 10, 2735.	4.1	1
49	Characterization of primary adult mouse cardiac fibroblast cultures. Canadian Journal of Physiology and Pharmacology, 2020, 98, 861-869.	1.4	0
50	Expression of fibroblast growth factor receptor-1 in rat heart H9c2 myoblasts increases cell proliferation. , 1997, , 89-97.		0
51	Adrenergic Receptor Signaling Pathways in the Regulation of Apoptosis and Autophagy in the Heart. , 2022, , 23-36.		0
52	Application of Three-Dimensional Culture Method in the Cardiac Conduction System Research. Methods and Protocols, 2022, 5, 50.	2.0	0