## Gianluigi Ciovati

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2067825/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Effect of low-temperature baking on the radio-frequency properties of niobium superconducting cavities for particle accelerators. Journal of Applied Physics, 2004, 96, 1591-1600.                                                                                                                            | 2.5 | 82        |
| 2  | Effect of high temperature heat treatments on the quality factor of a large-grain superconducting radio-frequency niobium cavity. Physical Review Special Topics: Accelerators and Beams, 2013, 16, .                                                                                                         | 1.8 | 71        |
| 3  | Dynamics of vortex penetration, jumpwise instabilities, and nonlinear surface resistance of type-II superconductors in strong rf fields. Physical Review B, 2008, 77, .                                                                                                                                       | 3.2 | 70        |
| 4  | High field <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"&gt;<mml:mi>Q</mml:mi></mml:math> slope and the baking effect: Review of recent<br>experimental results and new data on Nb heat treatments. Physical Review Special Topics: Accelerators<br>and Beams, 2010, 13, . | 1.8 | 65        |
| 5  | Effect of vortex hotspots on the radio-frequency surface resistance of superconductors. Physical Review B, 2013, 87, .                                                                                                                                                                                        | 3.2 | 58        |
| 6  | Improved oxygen diffusion model to explain the effect of low-temperature baking on high field losses in niobium superconducting cavities. Applied Physics Letters, 2006, 89, 022507.                                                                                                                          | 3.3 | 40        |
| 7  | Review of ingot niobium as a material for superconducting radiofrequency accelerating cavities.<br>Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers,<br>Detectors and Associated Equipment, 2015, 774, 133-150.                                                    | 1.6 | 36        |
| 8  | Measurement of the high-fieldQdrop in a high-purity large-grain niobium cavity for different oxidation processes. Physical Review Special Topics: Accelerators and Beams, 2007, 10, .                                                                                                                         | 1.8 | 34        |
| 9  | Decrease of the surface resistance in superconducting niobium resonator cavities by the microwave field. Applied Physics Letters, 2014, 104, .                                                                                                                                                                | 3.3 | 33        |
| 10 | Effect of low temperature baking in nitrogen on the performance of a niobium superconducting radio frequency cavity. Physical Review Accelerators and Beams, 2018, 21, .                                                                                                                                      | 1.6 | 33        |
| 11 | Evidence of high-field radio-frequency hot spots due to trapped vortices in niobium cavities. Physical<br>Review Special Topics: Accelerators and Beams, 2008, 11, .                                                                                                                                          | 1.8 | 30        |
| 12 | Flux expulsion in niobium superconducting radio-frequency cavities of different purity and essential contributions to the flux sensitivity. Physical Review Accelerators and Beams, 2020, 23, .                                                                                                               | 1.6 | 27        |
| 13 | Detection of surface carbon and hydrocarbons in hot spot regions of niobium superconducting rf<br>cavities by Raman spectroscopy. Physical Review Special Topics: Accelerators and Beams, 2013, 16, .                                                                                                         | 1.8 | 26        |
| 14 | Superconducting radio-frequency cavities made from medium and low-purity niobium ingots.<br>Superconductor Science and Technology, 2016, 29, 064002.                                                                                                                                                          | 3.5 | 22        |
| 15 | Review of the frontier workshop and Q-slope results. Physica C: Superconductivity and Its Applications, 2006, 441, 44-50.                                                                                                                                                                                     | 1.2 | 21        |
| 16 | Design of a cw, low-energy, high-power superconducting linac for environmental applications.<br>Physical Review Accelerators and Beams, 2018, 21, .                                                                                                                                                           | 1.6 | 21        |
| 17 | Superconducting Radio-Frequency Technology R&D for Future Accelerator Applications. Reviews of Accelerator Science and Technology, 2012, 05, 285-312.                                                                                                                                                         | 0.5 | 20        |
| 18 | Electron Tunneling and X-Ray Photoelectron Spectroscopy Studies of the Superconducting Properties of Nitrogen-Doped Niobium Resonator Cavities. Physical Review Applied, 2020, 13, .                                                                                                                          | 3.8 | 20        |

**GIANLUIGI CIOVATI** 

| #  | Article                                                                                                                                                                                                                                                                        | IF                                  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-----------|
| 19 | Buffered electrochemical polishing of niobium. Journal of Applied Electrochemistry, 2011, 41, 721-730.                                                                                                                                                                         | 2.9                                 | 17        |
| 20 | Flux pinning characteristics in cylindrical niobium samples used for superconducting radio frequency cavity fabrication. Superconductor Science and Technology, 2012, 25, 065014.                                                                                              | 3.5                                 | 17        |
| 21 | Enhancement in Quality Factor of SRF Niobium Cavities by Material Diffusion. IEEE Transactions on Applied Superconductivity, 2015, 25, 1-4.                                                                                                                                    | 1.7                                 | 17        |
| 22 | Multi-metallic conduction cooled superconducting radio-frequency cavity with high thermal stability. Superconductor Science and Technology, 2020, 33, 07LT01.                                                                                                                  | 3.5                                 | 15        |
| 23 | Characterization of etch pits found on a large-grain bulk niobium superconducting radio-frequency resonant cavity. Physical Review Special Topics: Accelerators and Beams, 2010, 13, .                                                                                         | 1.8                                 | 14        |
| 24 | Analysis of the medium field Q-slope in superconducting cavities made of bulk niobium. Physica C:<br>Superconductivity and Its Applications, 2006, 441, 57-61.                                                                                                                 | 1.2                                 | 13        |
| 25 | Development of Large Grain/Single Crystal Niobium Cavity Technology at Jefferson Lab. AIP Conference<br>Proceedings, 2007, , .                                                                                                                                                 | 0.4                                 | 13        |
| 26 | Measurement of the high-fieldQdrop in theTM010andTE011modes in a niobium cavity. Physical Review Special Topics: Accelerators and Beams, 2006, 9, .                                                                                                                            | 1.8                                 | 11        |
| 27 | Design and performance of a new induction furnace for heat treatment of superconducting radiofrequency niobium cavities. Review of Scientific Instruments, 2012, 83, 065105.                                                                                                   | 1.3                                 | 11        |
| 28 | Surface characterization of nitrogen-doped high purity niobium coupons compared with superconducting rf cavity performance. Physical Review Accelerators and Beams, 2019, 22, .                                                                                                | 1.6                                 | 10        |
| 29 | Low temperature laser scanning microscopy of a superconducting radio-frequency cavity. Review of Scientific Instruments, 2012, 83, 034704.                                                                                                                                     | 1.3                                 | 9         |
| 30 | High-Frequency Nonlinear Response of Superconducting Cavity-Grade <mml:math<br>xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"<br/>overflow="scroll"&gt;<mml:mi>Nb</mml:mi> ÀSurfaces. Physical Review Applied, 2019, 11, .</mml:math<br>                      | 3.8                                 | 7         |
| 31 | Design and commissioning of an e-beam irradiation beamline at the Upgraded Injector Test Facility at<br>Jefferson Lab. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators,<br>Spectrometers, Detectors and Associated Equipment, 2022, 1039, 167093. | 1.6                                 | 5         |
| 32 | Determination of the magnetic field dependence of the surface resistance of superconductors from cavity tests. Physical Review Accelerators and Beams, 2018, 21, .                                                                                                             | 1.6                                 | 4         |
| 33 | Magnetic field sensors for detection of trapped flux in superconducting radio frequency cavities.<br>Review of Scientific Instruments, 2021, 92, 104705.                                                                                                                       | 1.3                                 | 4         |
| 34 | Nonlinear Meissner effect in <mml:math<br>xmlns:mml="http://www.w3.org/1998/Math/MathML"&gt;<mml:mrow><mml:msub><mml:mi>Nb</mml:mi><mm<br>coplanar resonators. Physical Review Research, 2022, 4, .</mm<br></mml:msub></mml:mrow></mml:math<br>                                | l:mn <b>₃.‰</b> <td>ml:man&gt;</td> | ml:man>   |
| 35 | Effect of cooldown and residual magnetic field on the performance of niobium–copper clad superconducting radio-frequency cavity. Superconductor Science and Technology, 2018, 31, 015006.                                                                                      | 3.5                                 | 3         |
|    |                                                                                                                                                                                                                                                                                |                                     |           |

GIANLUIGI CIOVATI

| #  | Article                                                                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Imaging of the Surface Resistance of an SRF Cavity by Low-Temperature Laser Scanning Microscopy.<br>IEEE Transactions on Applied Superconductivity, 2013, 23, 3500506-3500506.                                                                                                     | 1.7 | 2         |
| 38 | SIMS analysis of high-performance accelerator niobium. Surface and Interface Analysis, 2014, 46, 288-290.                                                                                                                                                                          | 1.8 | 2         |
| 39 | High performance superconducting radio frequency ingot niobium technology for continuous wave applications. AIP Conference Proceedings, 2015, , .                                                                                                                                  | 0.4 | 2         |
| 40 | Impact of Remanent Magnetic Field on the Heat Load of Original CEBAF Cryomodule. IEEE Transactions on Applied Superconductivity, 2017, 27, 1-6.                                                                                                                                    | 1.7 | 1         |
| 41 | Reduction of waveguide vacuum trips in CEBAF accelerating cavities with a combination ion pump and non-evaporable getter pump. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2020, 964, 163788. | 1.6 | 0         |
| 42 | Evidence of increased radio-frequency losses in cavities from the fundamental power coupler cold window. Physical Review Accelerators and Beams, 2021, 24, .                                                                                                                       | 1.6 | 0         |