Trevor Owens

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2067272/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Interferon-Î ³ confers resistance to experimental allergic encephalomyelitis. European Journal of Immunology, 1996, 26, 1641-1646.	2.9	448
2	Chemokine Expression by Glial Cells Directs Leukocytes to Sites of Axonal Injury in the CNS. Journal of Neuroscience, 2003, 23, 7922-7930.	3.6	434
3	A novel microglial subset plays a key role in myelinogenesis in developing brain. EMBO Journal, 2017, 36, 3292-3308.	7.8	375
4	Perivascular Spaces and the Two Steps to Neuroinflammation. Journal of Neuropathology and Experimental Neurology, 2008, 67, 1113-1121.	1.7	295
5	IFN-γ Shapes Immune Invasion of the Central Nervous System Via Regulation of Chemokines. Journal of Immunology, 2000, 164, 2759-2768.	0.8	285
6	PK11195 binding to the peripheral benzodiazepine receptor as a marker of microglia activation in multiple sclerosis and experimental autoimmune encephalomyelitis. Journal of Neuroscience Research, 1997, 50, 345-353.	2.9	279
7	Microglial Recruitment, Activation, and Proliferation in Response to Primary Demyelination. American Journal of Pathology, 2007, 170, 1713-1724.	3.8	213
8	Toll-Like Receptor 2 Signaling in Response to Brain Injury: An Innate Bridge to Neuroinflammation. Journal of Neuroscience, 2006, 26, 12826-12837.	3.6	195
9	Genetic models for CNS inflammation. Nature Medicine, 2001, 7, 161-166.	30.7	169
10	Inflammatory cytokines in the brain: Does the CNS shape immune responses?. Trends in Immunology, 1994, 15, 566-571.	7.5	167
11	Induction of experimental autoimmune encephalomyelitis in C57BL / 6 mice deficient in either the chemokine macrophage inflammatory protein-11̂± or its CCR5 receptor. European Journal of Immunology, 2000, 30, 1410-1415.	2.9	156
12	IFNâ€Î³ enhances neurogenesis in wildâ€ŧype mice and in a mouse model of Alzheimer's disease. FASEB Journal, 2008, 22, 2843-2852.	0.5	153
13	Aβ-induced meningoencephalitis is IFN-γ-dependent and is associated with T cell-dependent clearance of Aβ in a mouse model of Alzheimer's disease. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 5048-5053.	7.1	147
14	Astrogliosis in the Neonatal and Adult Murine Brain Post-Trauma: Elevation of Inflammatory Cytokines and the Lack of Requirement for Endogenous Interferon-γ. Journal of Neuroscience, 1997, 17, 3664-3674.	3.6	145
15	The Immunology of Multiple Sclerosis and its Animal Model, Experimental Allergic Encephalomyelitis. Neurologic Clinics, 1995, 13, 51-73.	1.8	142
16	TLR3 deficiency renders astrocytes permissive to herpes simplex virus infection and facilitates establishment of CNS infection in mice. Journal of Clinical Investigation, 2012, 122, 1368-1376.	8.2	141
17	Increased severity of experimental autoimmune encephalomyelitis, chronic macrophage/microglial reactivity, and demyelination in transgenic mice producing tumor necrosis factorâ€i± in the central nervous system. European Journal of Immunology, 1997, 27, 905-913.	2.9	137

18 What is microglia neurotoxicity (Not)?. Glia, 2014, 62, 841-854.

4.9 127

#	Article	IF	CITATIONS
19	Key Metalloproteinases Are Expressed by Specific Cell Types in Experimental Autoimmune Encephalomyelitis. Journal of Immunology, 2004, 173, 5209-5218.	0.8	126
20	Proliferating resident microglia express the stem cell antigen CD34 in response to acute neural injury. Clia, 2005, 50, 121-131.	4.9	124
21	Comparison of microglia and infiltrating CD11c+ cells as antigen presenting cells for T cell proliferation and cytokine response. Journal of Neuroinflammation, 2014, 11, 57.	7.2	122
22	Statin Therapy Inhibits Remyelination in the Central Nervous System. American Journal of Pathology, 2009, 174, 1880-1890.	3.8	118
23	Cytokine and chemokine inter-regulation in the inflamed or injured CNS. Brain Research Reviews, 2005, 48, 178-184.	9.0	117
24	Microglia are required for astroglial tollâ€like receptor 4 response and for optimal TLR2 and TLR3 response. Glia, 2012, 60, 630-638.	4.9	105
25	The central nervous system environment controls effector CD4+ T cell cytokine profile in experimental allergic encephalomyelitis. European Journal of Immunology, 1997, 27, 2840-2847.	2.9	102
26	Interferons in the central nervous system: A few instruments play many tunes. Glia, 2014, 62, 339-355.	4.9	99
27	Glutamate metabolism is down-regulated in astrocytes during experimental allergic encephalomyelitis. , 1997, 20, 79-85.		98
28	Interferon-Î ³ in Progression to Chronic Demyelination and Neurological Deficit Following Acute EAE. Molecular and Cellular Neurosciences, 1998, 12, 376-389.	2.2	94
29	Inhibition of reactive astrocytosis in established experimental autoimmune encephalomyelitis favors infiltration by myeloid cells over T cells and enhances severity of disease. Glia, 2011, 59, 166-176.	4.9	94
30	Naive T lymphocytes traffic to inflamed central nervous system, but require antigen recognition for activation. European Journal of Immunology, 2000, 30, 1002-1009.	2.9	91
31	Direct demonstration of the infiltration of murine central nervous system by Pgp-1/CD44high CD45RBlow CD4+ T cells that induce experimental allergic encephalomyelitis. Journal of Neuroimmunology, 1992, 40, 57-69.	2.3	90
32	Effectors of Th1 and Th17 cells act on astrocytes and augment their neuroinflammatory properties. Journal of Neuroinflammation, 2017, 14, 204.	7.2	88
33	Nogo-A is a Reliable Oligodendroglial Marker in Adult Human and Mouse CNS and in Demyelinated Lesions. Journal of Neuropathology and Experimental Neurology, 2007, 66, 238-246.	1.7	87
34	Metalloproteinases Control Brain Inflammation Induced by Pertussis Toxin in Mice Overexpressing the Chemokine CCL2 in the Central Nervous System. Journal of Immunology, 2006, 177, 7242-7249.	0.8	81
35	IFNÎ ³ Enhances Microglial Reactions to Hippocampal Axonal Degeneration. Journal of Neuroscience, 2000, 20, 3612-3621.	3.6	80
36	Neutrophils That Infiltrate the Central Nervous System Regulate T Cell Responses. Journal of Immunology, 2005, 174, 5124-5131.	0.8	80

#	Article	IF	CITATIONS
37	Protective Microglial Subset in Development, Aging, and Disease: Lessons From Transcriptomic Studies. Frontiers in Immunology, 2020, 11, 430.	4.8	77
38	Injury-Induced Type I IFN Signaling Regulates Inflammatory Responses in the Central Nervous System. Journal of Immunology, 2010, 185, 1258-1264.	0.8	76
39	Chemokine expression in GKO mice (lacking interferon-gamma) with experimental autoimmune encephalomyelitis. Journal of NeuroVirology, 1999, 5, 95-101.	2.1	70
40	Pathologic and Protective Roles for Microglial Subsets and Bone Marrow- and Blood-Derived Myeloid Cells in Central Nervous System Inflammation. Frontiers in Immunology, 2015, 6, 463.	4.8	69
41	NF-κB-Driven STAT2 and CCL2 Expression in Astrocytes in Response to Brain Injury. Journal of Immunology, 2008, 181, 7284-7291.	0.8	68
42	A Role for Interferon-Gamma in Focal Cerebral Ischemia in Mice. Journal of Neuropathology and Experimental Neurology, 2004, 63, 942-955.	1.7	65
43	Continued Administration of Ciliary Neurotrophic Factor Protects Mice from Inflammatory Pathology in Experimental Autoimmune Encephalomyelitis. American Journal of Pathology, 2006, 169, 584-598.	3.8	65
44	The enigma of multiple sclerosis: inflammation and neurodegeneration cause heterogeneous dysfunction and damage. Current Opinion in Neurology, 2003, 16, 259-265.	3.6	65
45	Induction of endogenous Type I interferon within the central nervous system plays a protective role in experimental autoimmune encephalomyelitis. Acta Neuropathologica, 2015, 130, 107-118.	7.7	61
46	The enigma of multiple sclerosis: inflammation and neurodegeneration cause heterogeneous dysfunction and damage. Current Opinion in Neurology, 2003, 16, 259-265.	3.6	55
47	Signaling through MyD88 Regulates Leukocyte Recruitment after Brain Injury. Journal of Immunology, 2008, 181, 6481-6490.	0.8	55
48	IFN-γ-Induced Chemokines Synergize with Pertussis Toxin to Promote T Cell Entry to the Central Nervous System. Journal of Immunology, 2007, 178, 8175-8182.	0.8	54
49	Reactive microgliosis engages distinct responses by microglial subpopulations after minor central nervous system injury. Journal of Neuroscience Research, 2005, 82, 507-514.	2.9	53
50	CSF1R Stimulation Promotes Increased Neuroprotection by CD11c+ Microglia in EAE. Frontiers in Cellular Neuroscience, 2018, 12, 523.	3.7	53
51	Immune regulation and CNS autoimmune disease. Journal of Neuroimmunology, 1999, 100, 181-189.	2.3	52
52	Constitutive expression of a costimulatory ligand on antigenâ€presenting cells in the nervous system drives demyelinating disease. FASEB Journal, 2003, 17, 1-21.	0.5	48
53	Toll-Like Receptors in Neurodegeneration. Current Topics in Microbiology and Immunology, 2009, 336, 105-120.	1.1	48
54	Innate immune responses in central nervous system inflammation. FEBS Letters, 2011, 585, 3806-3812.	2.8	47

#	Article	IF	CITATIONS
55	CD8+ T cells in inflammatory demyelinating disease. Journal of Neuroimmunology, 2007, 191, 79-85.	2.3	43
56	Experimental Demyelination and Axonal Loss Are Reduced in MicroRNA-146a Deficient Mice. Frontiers in Immunology, 2018, 9, 490.	4.8	43
57	A Pathogenic Role for CD8+ T Cells in a Spontaneous Model of Demyelinating Disease. Journal of Immunology, 2006, 177, 2403-2411.	0.8	41
58	A role for adhesion molecules in contact-dependent T help for B cells. European Journal of Immunology, 1991, 21, 979-983.	2.9	38
59	Complement-dependent pathogenicity of brain-specific antibodies in cerebrospinal fluid. Journal of Neuroimmunology, 2013, 254, 76-82.	2.3	38
60	Interferon regulatory factor-7 modulates experimental autoimmune encephalomyelitis in mice. Journal of Neuroinflammation, 2011, 8, 181.	7.2	37
61	Cerebrospinal fluid aquaporinâ€4â€immunoglobulin G disrupts blood brain barrier. Annals of Clinical and Translational Neurology, 2015, 2, 857-863.	3.7	37
62	Inflammation in the Central Nervous System and Th17 Responses Are Inhibited by IFN-γ–Induced IL-18 Binding Protein. Journal of Immunology, 2010, 185, 2458-2466.	0.8	36
63	Loss rather than downregulation of CD4+ T cells as a mechanism for remission from experimental allergic encephalomyelitis. Journal of Neuroimmunology, 1993, 44, 193-198.	2.3	35
64	Toll-Like Receptors in Brain Development and Homeostasis. Science's STKE: Signal Transduction Knowledge Environment, 2007, 2007, pe47.	3.9	34
65	Chemokine receptor expression by inflammatory T cells in EAE. Frontiers in Cellular Neuroscience, 2014, 8, 187.	3.7	34
66	Enhanced Microglial Clearance of Myelin Debris in T Cell-Infiltrated Central Nervous System. Journal of Neuropathology and Experimental Neurology, 2009, 68, 845-856.	1.7	32
67	<scp>CCL</scp> 2 recruits T cells into the brain in a <scp>CCR</scp> 2â€independent manner. Apmis, 2017, 125, 945-956.	2.0	32
68	Constitutive Activation of Extracellular Signal-Regulated Kinase Predisposes Diffuse Large B-Cell Lymphoma Cell Lines to CD40-Mediated Cell Death. Cancer Research, 2006, 66, 3550-3557.	0.9	30
69	Stimulation of Adult Oligodendrogenesis by Myelin-Specific T Cells. American Journal of Pathology, 2011, 179, 2028-2041.	3.8	29
70	Blood–brain barrier disruption in CCL2 transgenic mice during pertussis toxin-induced brain inflammation. Fluids and Barriers of the CNS, 2012, 9, 10.	5.0	28
71	Thymic CCL2 influences induction of T-cell tolerance. Journal of Autoimmunity, 2014, 55, 73-85.	6.5	28
72	Elevated interferon gamma expression in the central nervous system of tumour necrosis factor receptor 1-deficient mice with experimental autoimmune encephalomyelitis. Immunology, 2006, 118, 060616085813001-???.	4.4	27

#	Article	IF	CITATIONS
73	X-linked Inhibitor of Apoptosis Regulates T Cell Effector Function. Journal of Immunology, 2007, 179, 7553-7560.	0.8	25
74	Identification of new therapeutic targets for prevention of CNS inflammation. Expert Opinion on Therapeutic Targets, 2002, 6, 203-215.	3.4	23
75	Neuromyelitis optica-like pathology is dependent on type I interferon response. Experimental Neurology, 2013, 247, 744-747.	4.1	23
76	Microglia-Secreted Factors Enhance Dopaminergic Differentiation of Tissue- and iPSC-Derived Human Neural Stem Cells. Stem Cell Reports, 2021, 16, 281-294.	4.8	23
77	Chemokines in Experimental Autoimmune Encephalomyelitis and Multiple Sclerosis. Advances in Experimental Medicine and Biology, 2003, 520, 120-132.	1.6	21
78	Co-stimulation by anti-immunoglobulin is required for B cell activation by CD40Llow T cells. European Journal of Immunology, 1994, 24, 2993-2999.	2.9	20
79	Immunotherapy for multiple sclerosis: From theory to practice. Nature Medicine, 1996, 2, 1074-1075.	30.7	20
80	Downregulation of membrane type-matrix metalloproteinases in the inflamed or injured central nervous system. Journal of Neuroinflammation, 2007, 4, 24.	7.2	20
81	Absence of miRNA-146a Differentially Alters Microglia Function and Proteome. Frontiers in Immunology, 2020, 11, 1110.	4.8	20
82	Diffusion Kurtosis Imaging maps neural damage in the EAE model of multiple sclerosis. NeuroImage, 2020, 208, 116406.	4.2	19
83	Macrophage-independent T cell infiltration to the site of injury-induced brain inflammation. Journal of Neuroimmunology, 2008, 203, 64-72.	2.3	18
84	Bone marrow-derived versus parenchymal sources of inducible nitric oxide synthase in experimental autoimmune encephalomyelitis. Journal of Neuroimmunology, 2004, 150, 70-79.	2.3	16
85	The attraction of adhesion molecules. Annals of Neurology, 1993, 34, 123-124.	5.3	15
86	Influence of type I IFN signaling on anti-MOG antibody-mediated demyelination. Journal of Neuroinflammation, 2017, 14, 127.	7.2	15
87	Protective roles for myeloid cells in neuroinflammation. Scandinavian Journal of Immunology, 2020, 92, e12963.	2.7	15
88	Surfactant Protein D Deficiency in Mice Is Associated with Hyperphagia, Altered Fat Deposition, Insulin Resistance, and Increased Basal Endotoxemia. PLoS ONE, 2012, 7, e35066.	2.5	14
89	Innate signaling within the central nervous system recruits protective neutrophils. Acta Neuropathologica Communications, 2020, 8, 2.	5.2	13
90	Expression of Astrocytic Type 2 Angiotensin Receptor in Central Nervous System Inflammation Correlates With Blood–Brain Barrier Breakdown. Journal of Molecular Neuroscience, 2010, 42, 89-98.	2.3	12

#	Article	IF	CITATIONS
91	The murine gammaherpesvirus-68 chemokine-binding protein M3 inhibits experimental autoimmune encephalomyelitis. Journal of Neuroimmunology, 2010, 224, 45-50.	2.3	12
92	CD40-Mediated Apoptosis in Murine B-Lymphoma Lines Containing Mutated p53. Experimental Cell Research, 2002, 280, 201-211.	2.6	11
93	Toll-like receptors on astrocytes: patterning for immunity. Journal of Neuroimmunology, 2005, 159, 1-2.	2.3	11
94	Vavâ€1 expression correlates with NFκB activation and CD40â€mediated cell death in diffuse large Bâ€cell lymphoma cell lines. Hematological Oncology, 2010, 28, 142-150.	1.7	11
95	MOG extracellular domain (p1–125) triggers elevated frequency of CXCR3+ CD4+ Th1 cells in the CNS of mice and induces greater incidence of severe EAE. Multiple Sclerosis Journal, 2014, 20, 1312-1321.	3.0	11
96	Type I interferonâ€activated microglia are critical for neuromyelitis optica pathology. Glia, 2021, 69, 943-953.	4.9	11
97	Angiotensin AT2 receptor–induced interleukin-10 attenuates neuromyelitis optica spectrum disorder–like pathology. Multiple Sclerosis Journal, 2020, 26, 1187-1196.	3.0	9
98	Central Nervous System-Endogenous TLR7 and TLR9 Induce Different Immune Responses and Effects on Experimental Autoimmune Encephalomyelitis. Frontiers in Neuroscience, 2021, 15, 685645.	2.8	9
99	Immune response induction in the central nervous system. Frontiers in Bioscience - Landmark, 2002, 7, d427-438.	3.0	7
100	Hypersensitivity Responses in the Central Nervous System. Frontiers in Immunology, 2015, 6, 517.	4.8	7
101	The chemokine receptor CCR2 maintains plasmacytoid dendritic cell homeostasis. Immunology Letters, 2017, 192, 72-78.	2.5	7
102	Elevated interferon-gamma in CNS inflammatory disease: a potential complication for bone marrow reconstitution in MS. Journal of Neuroimmunology, 2000, 108, 40-44.	2.3	6
103	Selective localization of IgG from cerebrospinal fluid to brain parenchyma. Journal of Neuroinflammation, 2018, 15, 110.	7.2	6
104	An Experimental Model of Neuromyelitis Optica Spectrum Disorder–Optic Neuritis: Insights Into Disease Mechanisms. Frontiers in Neurology, 2021, 12, 703249.	2.4	6
105	Detection and Cellular Localization of Phospho-STAT2 in the Central Nervous System by Immunohistochemical Staining. Methods in Molecular Biology, 2013, 967, 179-188.	0.9	5
106	Innate Signaling in the CNS Prevents Demyelination in a Focal EAE Model. Frontiers in Neuroscience, 2021, 15, 682451.	2.8	5
107	The complex immunology of multiple sclerosis. Multiple Sclerosis Journal, 2014, 20, 1023-1024.	3.0	2
108	PK11195 binding to the peripheral benzodiazepine receptor as a marker of microglia activation in multiple sclerosis and experimental autoimmune encephalomyelitis. Journal of Neuroscience Research, 1997, 50, 345-353.	2.9	2

#	Article	IF	CITATIONS
109	The protective effect of Angiotensin AT2-receptor stimulation in Neuromyelitis optica spectrum disorder is independent of astrocyte-derived BDNF. Multiple Sclerosis and Related Disorders, 2021, 53, 103033.	2.0	1
110	Mitochondria–A target for attenuation of astrocyte pathology. Journal of Neuroimmunology, 2021, 358, 577657.	2.3	1
111	Influence of effector molecules released by Th1 and Th17 cells on glial cells. Journal of Neuroimmunology, 2014, 275, 144.	2.3	0
112	IGF1 producing CD11c+ microglia emerge during postnatal neurodevelopment. Journal of Neuroimmunology, 2014, 275, 93.	2.3	0
113	Mechanisms underlying induction of antibody-mediated demyelination in muliple sclerosis. Journal of Neuroimmunology, 2014, 275, 55-56.	2.3	0
114	CCL2 chemokine in T cell tolerance and protection against experimental autoimmune encephalomyelitis. Journal of Neuroimmunology, 2014, 275, 197.	2.3	0
115	Induction of type I interferon in the central nervous system plays a protective role in EAE. Journal of Neuroimmunology, 2014, 275, 86-87.	2.3	0
116	Cytokines in CNS Inflammation. , 2005, , 113-136.		0
117	Microglia – Role in Immunity. , 2016, , 302-308.		0
118	Chemokines and Autoimmune Demyelination. , 2008, , 175-201.		0