Nathan P Rudemiller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2067144/publications.pdf Version: 2024-02-01

		394421	477307
32	1,464 citations	19	29
papers	citations	h-index	g-index
33	33	33	2302
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Type 1 Angiotensin Receptors on CD11c-Expressing Cells Protect Against Hypertension by Regulating Dendritic Cell–Mediated T Cell Activation. Hypertension, 2022, 79, 1227-1236.	2.7	8
2	The transcription factor Twist1 in the distal nephron but not in macrophages propagates aristolochic acid nephropathy. Kidney International, 2020, 97, 119-129.	5.2	20
3	Classical Dendritic Cells Mediate Hypertension by Promoting Renal Oxidative Stress and Fluid Retention. Hypertension, 2020, 75, 131-138.	2.7	39
4	C-C Motif Chemokine Receptor 7 Exacerbates Hypertension Through Effects on T Lymphocyte Trafficking. Hypertension, 2020, 75, 869-876.	2.7	5
5	Opposing actions of renal tubular- and myeloid-derived porcupine in obstruction-inducedÂkidney fibrosis. Kidney International, 2019, 96, 1308-1319.	5.2	10
6	Twist1 in Infiltrating Macrophages Attenuates Kidney Fibrosis via Matrix Metallopeptidase 13–Mediated Matrix Degradation. Journal of the American Society of Nephrology: JASN, 2019, 30, 1674-1685.	6.1	18
7	KLF4 in Macrophages Attenuates TNFα-Mediated Kidney Injury and Fibrosis. Journal of the American Society of Nephrology: JASN, 2019, 30, 1925-1938.	6.1	92
8	A20 in Myeloid Cells Protects Against Hypertension by Inhibiting Dendritic Cell-Mediated T-Cell Activation. Circulation Research, 2019, 125, 1055-1066.	4.5	27
9	Stimulating Type 1 Angiotensin Receptors on T Lymphocytes Attenuates Renal Fibrosis. American Journal of Pathology, 2019, 189, 981-988.	3.8	17
10	Salt, Hypertension, and Immunity. Annual Review of Physiology, 2018, 80, 283-307.	13.1	74
11	Drebrin regulates angiotensin II-induced aortic remodelling. Cardiovascular Research, 2018, 114, 1806-1815.	3.8	9
12	Interleukin 1 receptor (IL-1R1) activation exacerbates toxin-induced acute kidney injury. American Journal of Physiology - Renal Physiology, 2018, 315, F682-F691.	2.7	24
13	Immunologic Effects of the Renin-Angiotensin System. Journal of the American Society of Nephrology: JASN, 2017, 28, 1350-1361.	6.1	111
14	Characterization and Functional Phenotyping of Renal Immune Cells via Flow Cytometry. Methods in Molecular Biology, 2017, 1614, 87-98.	0.9	2
15	The role of chemokines in hypertension and consequent target organ damage. Pharmacological Research, 2017, 119, 404-411.	7.1	52
16	C-C Motif Chemokine 5 Attenuates Angiotensin II–Dependent Kidney Injury by Limiting Renal Macrophage Infiltration. American Journal of Pathology, 2016, 186, 2846-2856.	3.8	41
17	Interactions Between the Immune and the Renin–Angiotensin Systems in Hypertension. Hypertension, 2016, 68, 289-296.	2.7	54
18	Interleukin-6 inhibition attenuates hypertension and associated renal damage in Dahl salt-sensitive rats. American Journal of Physiology - Renal Physiology, 2016, 311, F555-F561.	2.7	65

#	Article	IF	CITATIONS
19	Experimental inhibition of porcupine-mediated Wnt O-acylation attenuates kidney fibrosis. Kidney International, 2016, 89, 1062-1074.	5.2	36
20	Interleukin-1 Receptor Activation Potentiates Salt Reabsorption in Angiotensin II-Induced Hypertension via the NKCC2 Co-transporter in the Nephron. Cell Metabolism, 2016, 23, 360-368.	16.2	113
21	Competing Actions of Type 1 Angiotensin II Receptors Expressed on T Lymphocytes and Kidney Epithelium during Cisplatin-Induced AKI. Journal of the American Society of Nephrology: JASN, 2016, 27, 2257-2264.	6.1	51
22	Hypertension and immunity. Current Opinion in Nephrology and Hypertension, 2015, 24, 470-474.	2.0	13
23	Candidate genes for hypertension: insights from the Dahl S rat. American Journal of Physiology - Renal Physiology, 2015, 309, F993-F995.	2.7	11
24	Mutation of <i>SH2B3</i> (<i>LNK</i>), a Genome-Wide Association Study Candidate for Hypertension, Attenuates Dahl Salt-Sensitive Hypertension via Inflammatory Modulation. Hypertension, 2015, 65, 1111-1117.	2.7	60
25	<i>SH2B3</i> Is a Genetic Determinant of Cardiac Inflammation and Fibrosis. Circulation: Cardiovascular Genetics, 2015, 8, 294-304.	5.1	24
26	Inflammation and Hypertension: New Understandings and Potential Therapeutic Targets. Current Hypertension Reports, 2015, 17, 507.	3.5	183
27	Sodiumâ€independent Dietary Effects on Renal Immune Cell Infiltration in Saltâ€sensitive Hypertension. FASEB Journal, 2015, 29, 811.11.	0.5	Ο
28	CXM: A New Tool for Mapping Breast Cancer Risk in the Tumor Microenvironment. Cancer Research, 2014, 74, 6419-6429.	0.9	29
29	CD247 Modulates Blood Pressure by Altering T-Lymphocyte Infiltration in the Kidney. Hypertension, 2014, 63, 559-564.	2.7	125
30	Genetic mutation of recombination activating gene 1 in Dahl salt-sensitive rats attenuates hypertension and renal damage. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2013, 304, R407-R414.	1.8	151
31	Mutation of Sh2b3 attenuates Dahl SS hypertension via inflammatory signaling. FASEB Journal, 2013, 27, 1114.4.	0.5	0
32	T lymphocytes infiltrating the kidney of Dahl SS rats are activated and differentiated. FASEB Journal, 2012, 26, 879.1.	0.5	0