Naoki Asao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2067143/publications.pdf Version: 2024-02-01

		28274	30087
167	11,517	55	103
papers	citations	h-index	g-index
222	222	222	02.41
222	222	222	9341
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	(S)-Erypoegin K, an isoflavone isolated from Erythrina poeppigiana, is a novel inhibitor of topoisomerase IIα: Induction of G2 phase arrest in human gastric cancer cells. Bioorganic and Medicinal Chemistry, 2021, 30, 115904.	3.0	3
2	Amorphous/low-crystalline core/shell-type nanoparticles as highly efficient and self-stabilizing catalysts for alkaline hydrogen evolution. Chemical Communications, 2020, 56, 8984-8987.	4.1	4
3	Induction of enantio-selective apoptosis in human leukemia HL-60 cells by (S)-erypoegin K, an isoflavone isolated from Erythrina poeppigiana. Bioorganic and Medicinal Chemistry, 2020, 28, 115490.	3.0	6
4	Differentiation of 0-, m-, and p-fluoro-α-pyrrolidinopropiophenones by Triton B-mediated one-pot reaction. Forensic Science International, 2019, 302, 109847.	2.2	2
5	Granular Barium Titanate Nanowire-Based Adsorbents for the Removal of Strontium Ions from Contaminated Water. ACS Applied Nano Materials, 2019, 2, 6793-6797.	5.0	7
6	Chemoselective Aerobic Crossâ€Dehydrogenative Coupling of Terminal Alkynes with Hydrosilanes by a Nanoporous Gold Catalyst. Chemistry - A European Journal, 2018, 24, 15777-15780.	3.3	18
7	Comparative Study of Single and Dual Gain-Narrowed Emission in Thiophene/Furan/Phenylene Co-Oligomer Single Crystals. Journal of Physical Chemistry C, 2017, 121, 2364-2368.	3.1	12
8	Composition-Dependent Morphology of Bi- and Trimetallic Phosphides: Construction of Amorphous Pd–Cu–Ni–P Nanoparticles as a Selective and Versatile Catalyst. ACS Applied Materials & Interfaces, 2017, 9, 34804-34811.	8.0	25
9	Catechol–TiO2 hybrids for photocatalytic H2 production and photocathode assembly. Chemical Communications, 2017, 53, 12638-12641.	4.1	43
10	Dealloying-oxidation Technique as a Powerful Synthetic Tool for Sodium Titanate Nanowires with High Ion-exchange Ability. Chemistry Letters, 2017, 46, 1825-1827.	1.3	1
11	A highly emissive distyrylthieno[3,2-b]thiophene based red luminescent organic single crystal: Aggregation induced emission, optical waveguide edge emission, and balanced ambipolar carrier transport. Organic Electronics, 2016, 34, 23-27.	2.6	18
12	Core–shell Pd–P@Pt nanoparticles as efficient catalysts for electrooxidation of formic acid. Journal of Applied Electrochemistry, 2016, 46, 1109-1118.	2.9	15
13	Hierarchical nanoporosity enhanced reversible capacity of bicontinuous nanoporous metal based Li-O2 battery. Scientific Reports, 2016, 6, 33466.	3.3	52
14	Cerium Oxide Nanorods with Unprecedented Lowâ€Temperature Oxygen Storage Capacity. Advanced Materials, 2016, 28, 1467-1471.	21.0	28
15	FeCl ₃ â€Mediated Oxidative Spirocyclization of Difluorenylidene Diarylethanes Leading to Dispiro[fluoreneâ€9,5′â€indeno[2,1â€ <i>a</i>]indeneâ€10′,9′′â€fluorene]s. Angewandte Chemie - Edition, 2016, 55, 259-263.	Int ema tio	nal25
16	Biphenyl end-capped bithiazole co-oligomers for high performance organic thin film field effect transistors. Chemical Communications, 2016, 52, 4926-4929.	4.1	16
17	2-Positional pyrene end-capped oligothiophenes for high performance organic field effect transistors. Chemical Communications, 2016, 52, 4800-4803.	4.1	41
18	Manganese powder promoted highly efficient and selective synthesis of fullerene mono- and biscycloadducts at room temperature. Scientific Reports, 2015, 5, 13920.	3.3	7

#	Article	IF	CITATIONS
19	Nanocatalysts Fabricated by a Dealloying Method. Chemical Record, 2015, 15, 964-978.	5.8	4
20	Aerobic oxidation of hydroxylamines with nanoporous gold catalyst as an efficient synthetic method of nitrones. Tetrahedron, 2015, 71, 6459-6462.	1.9	14
21	Triflic Acid Mediated Cascade Cyclization of Aryldiynes for the Synthesis of Indeno[1,2â€ <i>c</i>]chromenes: Application to Dyeâ€Sensitized Solar Cells. Chemistry - A European Journal, 2015, 21, 4065-4070.	3.3	26
22	Thieno[2,3,a]carbazole donor-based organic dyes for high efficiency dye-sensitized solar cells. Organic Chemistry Frontiers, 2015, 2, 253-258.	4.5	13
23	Tunneling Desorption of Single Hydrogen on the Surface of Titanium Dioxide. ACS Nano, 2015, 9, 6837-6842.	14.6	22
24	Highly efficient heterogeneous aerobic cross-dehydrogenative coupling via C–H functionalization of tertiary amines using a nanoporous gold skeleton catalyst. Chemical Communications, 2015, 51, 12764-12767.	4.1	65
25	Reply to "Comment on â€~Bottom-Up Graphene-Nanoribbon Fabrication Reveals Chiral Edges and Enantioselectivity'― ACS Nano, 2015, 9, 3404-3405.	14.6	18
26	Efficient thieno[3,2-a]carbazole-based organic dyes for dye-sensitized solar cells. Tetrahedron, 2015, 71, 6534-6540.	1.9	9
27	Ultrafine Sodium Titanate Nanowires with Extraordinary Sr Ion-Exchange Properties. Nano Letters, 2015, 15, 2980-2984.	9.1	40
28	Ni-Catalyzed direct 1,4-difunctionalization of [60]fullerene with benzyl bromides. Chemical Communications, 2015, 51, 6392-6394.	4.1	42
29	Nanostructured Zr-Pd Metallic Glass Thin Film for Biochemical Applications. Scientific Reports, 2015, 5, 7799.	3.3	56
30	Charge transport in organic crystals: Critical role of correlated fluctuations unveiled by analysis of Feynman diagrams. Journal of Chemical Physics, 2015, 142, 144503.	3.0	8
31	Self-Assembly Strategy for Fabricating Connected Graphene Nanoribbons. ACS Nano, 2015, 9, 12035-12044.	14.6	81
32	Pd-catalyzed cascade cyclization of o -alkynylarylbromides with dialkylalkynes via consecutive carbopalladation. Tetrahedron Letters, 2015, 56, 3133-3136.	1.4	3
33	Selective Transfer Semihydrogenation of Alkynes with Nanoporous Gold Catalysts. Journal of Organic Chemistry, 2015, 80, 847-851.	3.2	64
34	Metal atalyzed Annulation Reactions for π onjugated Polycycles. Chemistry - A European Journal, 2014, 20, 3554-3576.	3.3	144
35	Cu-Catalyzed C–H Amination of Hydrofullerenes Leading to 1,4-Difunctionalized Fullerenes. Organic Letters, 2014, 16, 620-623.	4.6	51
36	Fabrication of Pd–Ni–P Metallic Glass Nanoparticles and Their Application as Highly Durable Catalysts in Methanol Electro-oxidation. Chemistry of Materials, 2014, 26, 1056-1061.	6.7	121

#	Article	IF	CITATIONS
37	NBS-promoted oxidation of fullerene monoradicals leading to regioselective 1,4-difunctional fullerenes. Chemical Communications, 2014, 50, 15730-15732.	4.1	14
38	The synergistic effect of nanoporous AuPd alloy catalysts on highly chemoselective 1,4-hydrosilylation of conjugated cyclic enones. Chemical Communications, 2014, 50, 3344.	4.1	31
39	Carboxylic Acid-Catalyzed Highly Efficient and Selective Hydroboration of Alkynes with Pinacolborane. Organic Letters, 2014, 16, 4670-4673.	4.6	94
40	Mixing Time of Molecules Inside of Nanoporous Gold. SIAM Journal on Applied Mathematics, 2014, 74, 1298-1314.	1.8	3
41	GOLD-CATALYZED ADDITION OF HETEROATOM NUCLEOPHILE TO C–C MULTIPLE BOND. Catalytic Science Series, 2014, , 137-174.	0.0	0
42	Rh(III)-Catalyzed Regioselective Functionalization of C–H Bonds of Naphthylcarbamates for Oxidative Annulation with Alkynes. Organic Letters, 2014, 16, 4830-4833.	4.6	78
43	Bottom-Up Graphene-Nanoribbon Fabrication Reveals Chiral Edges and Enantioselectivity. ACS Nano, 2014, 8, 9181-9187.	14.6	187
44	Pd-Catalyzed Synthesis of 9,9′-Bifluorenylidene Derivatives via Dual C–H Activation of Bis-biaryl Alkynes. Journal of the American Chemical Society, 2014, 136, 9540-9543.	13.7	59
45	Thieno[2,3-a]carbazole-based donor–΀–acceptor organic dyes for efficient dye-sensitized solar cells. Tetrahedron, 2014, 70, 6211-6216.	1.9	18
46	Pd-Catalyzed Cascade Crossover Annulation of <i>o</i> -Alkynylarylhalides and Diarylacetylenes Leading to Dibenzo[<i>a</i> , <i>e</i>]pentalenes. Journal of the American Chemical Society, 2013, 135, 10222-10225.	13.7	91
47	Selective Aerobic Oxidation of Methanol in the Coexistence of Amines by Nanoporous Gold Catalysts: Highly Efficient Synthesis of Formamides. Chemistry - A European Journal, 2013, 19, 11832-11836.	3.3	77
48	Theoretical Analysis on the Optoelectronic Properties of Single Crystals of Thiophene-furan-phenylene Co-Oligomers: Efficient Photoluminescence due to Molecular Bending. Journal of Physical Chemistry C, 2013, 117, 8072-8078.	3.1	30
49	Remarkable Catalytic Property of Nanoporous Gold on Activation of Diborons for Direct Diboration of Alkynes. Organic Letters, 2013, 15, 5766-5769.	4.6	101
50	Unsupported Nanoporous Gold Catalyst for Highly Selective Hydrogenation of Quinolines. Organic Letters, 2013, 15, 1484-1487.	4.6	99
51	Structure–property relationship of different electron donors: novel organic sensitizers based on fused dithienothiophene ï€-conjugated linker for high efficiency dye-sensitized solar cells. Tetrahedron, 2013, 69, 3444-3450.	1.9	27
52	Nanorheological Mapping of Rubbers by Atomic Force Microscopy. Macromolecules, 2013, 46, 1916-1922.	4.8	61
53	Selective hydrosilylation of alkynes with a nanoporous gold catalyst. Catalysis Science and Technology, 2013, 3, 2902.	4.1	58
54	Single crystal biphenyl end-capped furan-incorporated oligomers: influence of unusual packing structure on carrier mobility and luminescence. Journal of Materials Chemistry C, 2013, 1, 4163.	5.5	73

#	Article	IF	CITATIONS
55	Photoresponse on the Desorption of an Atomic Hydrogen on Titanium Dioxide Surface Induced by a Tip of Scanning Tunneling Microscope. Chemistry Letters, 2013, 42, 942-943.	1.3	4
56	Nanoporous Gold-Catalyzed [4+2] Benzannulation between ortho-Alkynylbenzaldehydes and Alkynes. Synlett, 2012, 2012, 66-69.	1.8	44
57	From molecular catalysts to nanostructured materials skeleton catalysts. Pure and Applied Chemistry, 2012, 84, 1771-1784.	1.9	28
58	Atomic origins of the high catalytic activity of nanoporous gold. Nature Materials, 2012, 11, 775-780.	27.5	803
59	Aerobic oxidation of alcohols in the liquid phase with nanoporous gold catalysts. Chemical Communications, 2012, 48, 4540.	4.1	82
60	Donor–acceptor dyes incorporating a stable dibenzosilole π-conjugated spacer for dye-sensitized solar cells. Journal of Materials Chemistry, 2012, 22, 10771.	6.7	45
61	Nanoporous Gold Catalyst for Highly Selective Semihydrogenation of Alkynes: Remarkable Effect of Amine Additives. Journal of the American Chemical Society, 2012, 134, 17536-17542.	13.7	201
62	A nanostructured skeleton catalyst: Suzuki-coupling with a reusable and sustainable nanoporous metallic glass Pd-catalyst. Chemical Communications, 2011, 47, 5985.	4.1	60
63	A novel metal-free panchromatic TiO2 sensitizer based on a phenylenevinylene-conjugated unit and an indoline derivative for highly efficient dye-sensitized solar cells. Chemical Communications, 2011, 47, 12400.	4.1	64
64	Gold-catalyzed alkylation of silyl enol ethers with <i>ortho</i> -alkynylbenzoic acid esters. Beilstein Journal of Organic Chemistry, 2011, 7, 648-652.	2.2	8
65	Stat3 as a Therapeutic Target for the Treatment of Psoriasis: A Clinical Feasibility Study with STA-21, a Stat3 Inhibitor. Journal of Investigative Dermatology, 2011, 131, 108-117.	0.7	190
66	Formation and properties of Au-based nanograined metallic glasses. Acta Materialia, 2011, 59, 6433-6440.	7.9	136
67	Reusable and Sustainable Nanostructured Skeleton Catalyst: Heck Reaction with Nanoporous Metallic Glass Pd (PdNPore) as a Support, Stabilizer and Ligandâ€Free Catalyst. Advanced Synthesis and Catalysis, 2011, 353, 2927-2932.	4.3	39
68	Nanostructured Materials as Catalysts: Nanoporousâ€Goldâ€Catalyzed Oxidation of Organosilanes with Water. Angewandte Chemie - International Edition, 2010, 49, 10093-10095.	13.8	215
69	Gold-catalyzed C–S bond formation from thiols. Tetrahedron Letters, 2010, 51, 378-381.	1.4	71
70	Gold-catalyzed substitution reaction with ortho-alkynylbenzoic acid alkyl ester as an efficient alkylating agent. Tetrahedron, 2009, 65, 1774-1784.	1.9	47
71	CuX2-mediated [4+2] benzannulation as a new synthetic tool for stereoselective construction of haloaromatic compounds. Tetrahedron, 2009, 65, 9575-9582.	1.9	47
72	Gold-catalyzed transesterification of ortho-alkynylbenzoic acid esters: a novel protecting group for alcohols and phenols. Tetrahedron Letters, 2008, 49, 7046-7049.	1.4	19

#	Article	IF	CITATIONS
73	AuCl-catalyzed reaction of ortho-alkynyl(oxo)benzene with benzenediazonium 2-carboxylate as a synthetic method towards anthracene, triptycene, and phthalazine derivatives. Tetrahedron, 2008, 64, 787-796.	1.9	24
74	An efficient method for construction of tetrahydroisoquinoline skeleton via double cyclization process using ortho-vinylbenzaldehydes and amino alcohols: application to the synthesis of (S)-cryptostyline II. Tetrahedron Letters, 2008, 49, 2722-2725.	1.4	21
75	Preparation of 1,2-Dihydroisoquinolines by a Three-Component Reaction under Catalyst-Free Conditions. Synthesis, 2008, 2008, 820-822.	2.3	1
76	Silver-Catalyzed Synthesis of 1,2-Dihydroisoquinolines through Direct Addition of Carbon Pronucleophiles to ortho-Alkynylaryl Aldimines. Heterocycles, 2008, 76, 471.	0.7	13
77	A Facile Synthesis of 1,2-Dihydroisoquinolines by Three-Component Reaction. Heterocycles, 2007, 74, 649.	0.7	7
78	Gold-Catalyzed Etherification and Friedelâ^'Crafts Alkylation Using ortho-Alkynylbenzoic Acid Alkyl Ester as an Efficient Alkylating Agent. Organic Letters, 2007, 9, 4299-4302.	4.6	66
79	Gold-Catalyzed Benzannulation. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2007, 65, 897-904.	0.1	10
80	Lewis Acid-Catalyzed [4 + 2] Benzannulation between Enynal Units and Enols or Enol Ethers:  Novel Synthetic Tools for Polysubstituted Aromatic Compounds Including Indole and Benzofuran Derivatives. Journal of Organic Chemistry, 2006, 71, 5249-5253.	3.2	134
81	AuCl-Catalyzed [4+2] Benzannulation betweeno-Alkynyl(oxo)benzene and Benzyne. Organic Letters, 2006, 8, 5361-5363.	4.6	100
82	An Environmentally Friendly Synthetic Method of 1,2-Dihydroisoquinoline Frameworks via Three-Component Reaction with o-Alkynylbenzaldehydes, Primary Amines, and Pronucleophiles. Organic Letters, 2006, 8, 4149-4151.	4.6	112
83	Gold- and Copper-Catalyzed [4+2] Benzannulations between Enynal or Enynone Units and 2ï€-Systems. Synlett, 2006, 2006, 1645-1656.	1.8	189
84	Synthesis of organosilicon polymers by using the Lewis-acid-catalyzed trans-allylsilylation of alkynes. Tetrahedron Letters, 2005, 46, 27-30.	1.4	11
85	Domino allylation and cyclization of ortho-alkynylbenzaldehydes with allyltrimethylsilane catalyzed by Pd(II)–Cu(II) bimetallic systems. Tetrahedron, 2005, 61, 11322-11326.	1.9	92
86	Direct Mannich and Nitro-Mannich Reactions with Non-Activated Imines: AgOTf-Catalyzed Addition of Pronucleophiles toortho-Alkynylaryl Aldimines Leading to 1,2-Dihydroisoquinolines. Angewandte Chemie - International Edition, 2005, 44, 5526-5528.	13.8	212
87	AuBr3- and Cu(OTf)2-Catalyzed Intramolecular [4 + 2] Cycloaddition of Tethered Alkynyl and Alkenyl Enynones and Enynals: A New Synthetic Method for Functionalized Polycyclic Hydrocarbons ChemInform, 2005, 36, no.	0.0	0
88	Direct Mannich and Nitro-Mannich Reactions with Non-Activated Imines: AgOTf-Catalyzed Addition of Pronucleophiles to ortho-Alkynylaryl Aldimines Leading to 1,2-Dihydroisoquinolines ChemInform, 2005, 36, no.	0.0	0
89	AuBr3- and Cu(OTf)2-Catalyzed Intramolecular [4 + 2] Cycloaddition of Tethered Alkynyl and Alkenyl Enynones and Enynals:Â A New Synthetic Method for Functionalized Polycyclic Hydrocarbons. Journal of Organic Chemistry, 2005, 70, 3682-3685.	3.2	183
90	Efficient Method for Synthesis of Angucyclinone Antibiotics via Gold-Catalyzed Intramolecular [4 + 2] Benzannulation:Â Enantioselective Total Synthesis of (+)-Ochromycinone and (+)-Rubiginone B2. Journal of Organic Chemistry, 2005, 70, 8977-8981.	3.2	120

#	Article	IF	CITATIONS
91	Lewis Acid Catalyzed Benzannulation via Unprecedented [4 + 2] Cycloaddition of o-Alkynyl(oxo)benzenes and Enynals with Alkynes ChemInform, 2004, 35, no.	0.0	0
92	Synthesis of Novel Antitumor Agent 1-Methoxy-5,10-dioxo-5,10-dihydro-1H-benzo[g]isochromene Carboxylic Acid (3-Dimethylaminopropyl)amide with a Dual Role Pd(II) Catalyst ChemInform, 2004, 35, no.	0.0	0
93	AuBr3-Catalyzed [4 + 2] Benzannulation Between an Enynal Unit and Enol ChemInform, 2004, 35, no.	0.0	0
94	AuBr3-Catalyzed [4 + 2] Benzannulation between an Enynal Unit and Enol. Journal of the American Chemical Society, 2004, 126, 7458-7459.	13.7	268
95	AuCl3-Catalyzed Benzannulation: Synthesis of Naphthyl Ketone Derivatives from o-Alkynylbenzaldehydes with Alkynes ChemInform, 2003, 34, no.	0.0	0
96	Lewis Acid Catalyzed Stereoselective Hydrosilylation of Ketones under the Control of σ—π Chelation ChemInform, 2003, 34, no.	0.0	0
97	ï€â€"ï€ Chelation Controlled Chemoselective Conjugate Addition of Lithium Dimethylcuprate ChemInform, 2003, 34, no.	0.0	0
98	"Me2CuLi×TMSCl in CH2Cl2― The Most Powerful Methylating Agent for Sterically Congested α,β-Enoates ChemInform, 2003, 34, no.	0.0	0
99	AuBr3-Catalyzed Cyclization of o-(Alkynyl)nitrobenzenes. Efficient Synthesis of Isatogens and Anthranils ChemInform, 2003, 34, no.	0.0	0
100	Functionalized 1,2-Dihydronaphthalenes from the Cu(OTf)2-Catalyzed [4 + 2] Cycloaddition of o-Alkynyl(oxo)benzenes with Alkenes ChemInform, 2003, 34, no.	0.0	0
101	Functionalized 1,2-Dihydronaphthalenes from the Cu(OTf)2-Catalyzed [4+2] Cycloaddition of o-Alkynyl(oxo)benzenes with Alkenes. Angewandte Chemie - International Edition, 2003, 42, 3504-3506.	13.8	190
102	π–π Chelation controlled chemoselective conjugate addition of lithium dimethylcuprate. Tetrahedron Letters, 2003, 44, 1803-1805.	1.4	9
103	â€ ⁻ Me2CuLi·TMSCl in CH2Cl2'. The most powerful methylating agent for sterically congested α,β-enoates. Tetrahedron Letters, 2003, 44, 4265-4266.	1.4	20
104	AuBr3-catalyzed cyclization of o-(alkynyl)nitrobenzenes. Efficient synthesis of isatogens and anthranils. Tetrahedron Letters, 2003, 44, 5675-5677.	1.4	109
105	Lewis Acid-Catalyzed Benzannulation via Unprecedented [4+2] Cycloaddition ofo-Alkynyl(oxo)benzenes and Enynals with Alkynes. Journal of the American Chemical Society, 2003, 125, 10921-10925.	13.7	380
106	Synthesis of Novel Antitumor Agent 1-Methoxy-5,10- dioxo-5,10-dihydro-1H-benzo[g]isochromene Carboxylic Acid (3-Dimethylylaminopropyl)amide with a Dual Role Pd(II) Catalyst. Journal of Organic Chemistry, 2003, 68, 9496-9498.	3.2	91
107	AuCl3-Catalyzed Benzannulation:Â Synthesis of Naphthyl Ketone Derivatives fromo-Alkynylbenzaldehydes with Alkynes. Journal of the American Chemical Society, 2002, 124, 12650-12651.	13.7	418
108	Pd(II) Acts Simultaneously as a Lewis Acid and as a Transition-Metal Catalyst:  Synthesis of Cyclic Alkenyl Ethers from Acetylenic Aldehydes. Journal of the American Chemical Society, 2002, 124, 764-765.	13.7	321

ΝΑΟΚΙ ASAO

#	Article	IF	CITATIONS
109	Lewis acid catalyzed stereoselective hydrosilylation of ketones under the control of σ–π chelation. Tetrahedron, 2002, 58, 8195-8203.	1.9	46
110	Lewis Acid Catalyzed Stereoselective Carbosilylation. Intramoleculartrans-Vinylsilylation andtrans-Arylsilylation of Unactivated Alkynes. Journal of the American Chemical Society, 2001, 123, 10899-10902.	13.7	52
111	Ïfâ^'Ĩ€ Chelation-Controlled Stereoselective Hydrosilylation of Ketones. Journal of the American Chemical Society, 2001, 123, 6931-6932.	13.7	41
112	Lewis Acid Mediated Intermolecular Vinylsilylation of Alkynes. Chemistry Letters, 2001, 30, 982-983.	1.3	7
113	Ïf–π Chelation-controlled chemoselective ring openings of epoxides. Tetrahedron Letters, 2001, 42, 7903-7905.	1.4	14
114	Highly diastereoselective desymmetrizing intramolecular cyclization of allylstannane with a diketone promoted by Lewis acid or transition metal complex. Journal of Organometallic Chemistry, 2001, 624, 136-142.	1.8	2
115	Do More Electrophilic Aldehydes/Ketones Exhibit Higher Reactivity toward Nucleophiles in the Presence of Lewis Acids?. Angewandte Chemie - International Edition, 2001, 40, 3206-3208.	13.8	45
116	Lewis acid-mediated intramolecular addition of silyl enol ethers to internal unactivated alkynes. Canadian Journal of Chemistry, 2001, 79, 1624-1631.	1.1	25
117	Lewis Acid-Catalyzed Hydrometalation and Carbometalation of Unactivated Alkynes. Bulletin of the Chemical Society of Japan, 2000, 73, 1071-1087.	3.2	73
118	Dramatic Enhancement of Reactivity of Organosilicon Compounds Induced by Complexation of Bis(allyl)silanes with Fluoride Ion. Tetrahedron, 2000, 56, 5373-5382.	1.9	18
119	Lewis acid-catalyzed trans-carbosilylation of alkynes with propargyl- and allenyltrimethylsilanes. Tetrahedron Letters, 2000, 41, 4499-4502.	1.4	28
120	Bis-zirconium and bis-hafnium catalysts for the strong activation of carbonyl substrates. Tetrahedron Letters, 2000, 41, 5543-5546.	1.4	36
121	Chelation control through the coordination of an olefinic π-bond to Lewis acid. Tetrahedron Letters, 2000, 41, 9533-9536.	1.4	10
122	Chelation Control through the Coordination of Lewis Acids to an Acetylenic π-Bond. Journal of the American Chemical Society, 2000, 122, 4817-4818.	13.7	58
123	Synthesis of Various Silacycles via the Lewis Acid-Catalyzed IntramolecularTrans-Hydrosilylation of Unactivated Alkynes. Journal of Organic Chemistry, 2000, 65, 8919-8923.	3.2	74
124	Lewis acid catalyzed allylstannylation of unactivated alkynes. Tetrahedron, 1999, 55, 3779-3790.	1.9	57
125	Lewis Acid Catalyzed Highly Regio- and StereocontrolledTrans-Hydrosilylation of Alkynes and Allenes. Journal of Organic Chemistry, 1999, 64, 2494-2499.	3.2	141
126	Lewis Acid-Catalyzed Stereoselective Intramoleculartrans-Vinylsilylation of Unactivated Alkynes. Journal of the American Chemical Society, 1999, 121, 3797-3798.	13.7	48

#	Article	IF	CITATIONS
127	Asymmetric synthesis of β-amino acids and β-lactam derivatives via conjugate addition of metal amides. Advances in Asymmetric Synthesis, 1999, , 1-37.	0.4	4
128	o-Bis(allyldimethylsilyl)benzene as a remarkably effective allylation agent for carbonyl compounds with Bu4NF catalyst. Tetrahedron Letters, 1998, 39, 3177-3180.	1.4	22
129	Simultaneous coordination and double activation phenomena of carbonyl and epoxy oxygens by bis-titanium reagent as a bidentate Lewis acid catalyst. Tetrahedron Letters, 1998, 39, 3729-3732.	1.4	30
130	Protic Solvent-Promoted Neutral Allylation of Aldehydes and Ketones with 1,8-Bis(allylstannyl)naphthalenes. Synlett, 1998, 1998, 377-378.	1.8	6
131	Radical Reaction Initiated and Stereocontrolled by Zinc Chloride. Heterocycles, 1998, 47, 765.	0.7	10
132	High Activation of Carbonyl Groups with Bidentate Lewis Acid Catalysts Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 1998, 56, 377-385.	0.1	7
133	Lewis Acid Catalyzedtrans-Allylsilylation of Unactivated Alkynes. Journal of the American Chemical Society, 1997, 119, 6781-6786.	13.7	86
134	Highly Diastereoselective Conjugate Addition of Lithium Dialkylamides to α,β-Unsaturated Esters Having a Chiral Center at the γ-Position. Journal of Organic Chemistry, 1997, 62, 6274-6282.	3.2	57
135	1,8-Bis(allylstannyl)naphthalene Derivatives as Neutral Allylation Agents: Rate Acceleration by Chelation-Induced Lewis Acidity. Angewandte Chemie International Edition in English, 1997, 36, 2507-2509.	4.4	11
136	1,8â€Bis(allylstannyl)naphthalinderivate als neutrale Allylierungsreagentien: Steigerung der Reaktionsgeschwindigkeit als Folge einer durch Chelatisierung erzeugten Lewisâ€Aciditä Angewandte Chemie, 1997, 109, 2616-2618.	2.0	2
137	Lewis Acid-Catalyzedtrans-Hydrosilylation of Alkynes. Journal of Organic Chemistry, 1996, 61, 7654-7655.	3.2	127
138	Lewis Acid-Catalyzedtrans-Carbosilylation of Simple Alkynes. Journal of Organic Chemistry, 1996, 61, 4874-4875.	3.2	59
139	Lewis Acid-Catalyzed Hydrostannation of Acetylenes. Regio- and StereoselectiveTrans-Addition of Tributyltin Hydride and Dibutyltin Dihydrideâ€. Journal of Organic Chemistry, 1996, 61, 4568-4571.	3.2	81
140	trans-Allylstannylation of certain acetylenes catalysed by ZrCl4. Chemical Communications, 1996, , 1513.	4.1	41
141	5(N-Methylbenzoylamino)-2, 2, 6, 6-tetramethylheptan-3-ol as a new class of recoverable chiral auxiliary. Tetrahedron Letters, 1996, 37, 1863-1866.	1.4	10
142	Asymmetric Synthesis of a ^{î2} -Lactam Framework via the Conjugate Addition of Amidocuprates(I) to Chiral Enoates. Bulletin of the Chemical Society of Japan, 1995, 68, 2103-2111.	3.2	13
143	Remarkable reversal of the regioselectivity in the palladium catalyzed hydrocarbonation reaction of allenes with methylmalononitrile. Tetrahedron Letters, 1995, 36, 2811-2814.	1.4	47
144	A Three Component Coupling Approach to a Chiral 1.betaMethylcarbapenem Key Intermediate. Journal of Organic Chemistry, 1995, 60, 143-148.	3.2	53

#	Article	IF	CITATIONS
145	Synthesis of Netropsin and Distamycin Analogs Bearing o-Carborane and Their DNA Recognition. Journal of Organic Chemistry, 1995, 60, 3352-3357.	3.2	28
146	Ytterbium triisopropoxide catalysed ring opening of epoxides with trimethylsilyl azide. Journal of the Chemical Society Chemical Communications, 1995, , 1021.	2.0	35
147	Lewis acid catalysed trans-hydrostannylation of acetylenes. Journal of the Chemical Society Chemical Communications, 1995, , 2405.	2.0	39
148	Palladium- and platinum-catalysed addition of aldehydes with allylstannanes. Journal of the Chemical Society Chemical Communications, 1995, , 1273.	2.0	44
149	Asymmetric Diels–Aider reactions of TMHD-acrylate using TiCl4·(ArnHg)mcomplexed Lewis acids. Journal of the Chemical Society Chemical Communications, 1995, , 1271-1272.	2.0	4
150	Nickel catalyzed imine aldol reactions between activated imines and pronucleophiles. Tetrahedron Letters, 1995, 36, 5023-5026.	1.4	7
151	Highly stereocontrolled and concise asymmetric synthesis of the Î ² -Lactam framework via a TCC method. Tetrahedron Letters, 1994, 35, 8425-8428.	1.4	14
152	Ytterbium triflate catalyzed ring opening of aziridines with amines. Tetrahedron Letters, 1994, 35, 7395-7398.	1.4	92
153	Zinc Chloride as a Radical Initiator as Well as a Chelating Agent. Journal of the American Chemical Society, 1994, 116, 421-422.	13.7	79
154	Palladium-Catalyzed Addition of Activated Methylene and Methyne Compounds to Allenes. Journal of the American Chemical Society, 1994, 116, 6019-6020.	13.7	150
155	Ytterbium triflate and high pressure-mediated ring opening of epoxides with amines. Journal of the Chemical Society Perkin Transactions 1, 1994, , 2597.	0.9	98
156	Transition Metal Catalyzed Addition of Certain Nucleophiles to Imines. Journal of the American Chemical Society, 1994, 116, 3161-3162.	13.7	60
157	Asymmetric synthesis of the β-lactam framework via a three-component coupling reaction. Journal of the Chemical Society Chemical Communications, 1993, , 1660-1662.	2.0	18
158	Selective reactions using allylic metals. Chemical Reviews, 1993, 93, 2207-2293.	47.7	1,561
159	Regio- and stereo-selective ring opening of epoxides with amide cuprate reagents. Journal of the Chemical Society Chemical Communications, 1993, , 1201.	2.0	49
160	Syntheses of Nitrogen Containing Compounds Using Reactive Organometallics Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 1993, 51, 1005-1012.	0.1	3
161	Amide cuprate reagents as a new class of nitrogen nucleophiles. Application to asymmetric synthesis of .betalactams. Journal of the American Chemical Society, 1992, 114, 5427-5429.	13.7	88
162	Stereodivergent synthesis of the enolates of a β-amino ester by using lithium N-benzyltrimethylsilylamide. Tetrahedron, 1990, 46, 4563-4572.	1.9	60

ΝΑΟΚΙ ΑSAO

#	Article	IF	CITATIONS
163	Copper azide as a new reagent for syn-SN2 displacement of .gammasulfonyloxyalpha.,.betaunsaturated esters. Journal of Organic Chemistry, 1990, 55, 5303-5304.	3.2	13
164	New reagents. X. Reagents for functionalization. Amination reagent: Diamidecopper lithium Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 1990, 48, 1066-1067.	0.1	1
165	Highly stereodivergent generation of the Z- and E-enolates of a β-amino ester via conjugate addition to methyl crotonate by using lithium N-benzyltrimethylsilylamide as a nitrogen nucleophile, and application to stereoselective aldol reactions. Journal of the Chemical Society Chemical Communications. 1989. , 753-754.	2.0	25
166	Lithium n-benzyltrimethylsilylamide (LSA): a new reagent for conjugate addition - enolate trapping reactions. Tetrahedron, 1988, 44, 4173-4180.	1.9	57
167	Stereoselective α-alkylation of α,β-unsaturated esters utilizing conjugate addition of nitrogen nucleophiles (R2NLi). Journal of the Chemical Society Chemical Communications, 1987, , 1410-1411.	2.0	26