Song Xiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2066738/publications.pdf Version: 2024-02-01

SONG XIANG

#	Article	IF	CITATIONS
1	Mechanistic insights into the multiple activities of the Rad5 family of enzymes. Journal of Molecular Biology, 2022, , 167581.	4.2	1
2	Structure of Rad5 provides insights into its role in tolerance to replication stress. Molecular and Cellular Oncology, 2021, 8, 1889348.	0.7	0
3	Structural Insights into the Interaction Between CRTCs and 14-3-3. Journal of Molecular Biology, 2021, 433, 166874.	4.2	4
4	Structural basis for the multi-activity factor Rad5 in replication stress tolerance. Nature Communications, 2021, 12, 321.	12.8	10
5	Crystal structures of glycogen-debranching enzyme mutants in complex with oligosaccharides. Acta Crystallographica Section F, Structural Biology Communications, 2021, 77, 420-426.	0.8	0
6	Coupling of Integrin $\hat{l}\pm 5$ to Annexin A2 by Flow Drives Endothelial Activation. Circulation Research, 2020, 127, 1074-1090.	4.5	65
7	Macrophage K63-Linked Ubiquitination of YAP Promotes Its Nuclear Localization and Exacerbates Atherosclerosis. Cell Reports, 2020, 32, 107990.	6.4	68
8	Singleâ€particle analysis of urea amidolyase reveals its molecular mechanism. Protein Science, 2020, 29, 1242-1249.	7.6	2
9	Structural insights into sodium transport by the oxaloacetate decarboxylase sodium pump. ELife, 2020, 9, .	6.0	13
10	Sex-related DNA methylation differences in B cell chronic lymphocytic leukemia. Biology of Sex Differences, 2019, 10, 2.	4.1	23
11	Structure and function of urea amidolyase. Bioscience Reports, 2018, 38, .	2.4	12
12	Structural basis for protein phosphatase 1 recruitment by glycogenâ€ŧargeting subunits. FEBS Journal, 2018, 285, 4646-4659.	4.7	12
13	Structural Insights into the CRTC2–CREB Complex Assembly on CRE. Journal of Molecular Biology, 2018, 430, 1926-1939.	4.2	16
14	Lysine glycation of apolipoprotein A-I impairs its anti-inflammatory function in type 2 diabetes mellitus. Journal of Molecular and Cellular Cardiology, 2018, 122, 47-57.	1.9	22
15	Crystal structure of glycogen debranching enzyme and insights into its catalysis and disease-causing mutations. Nature Communications, 2016, 7, 11229.	12.8	37
16	mRNA quality control at the 5' end. Journal of Zhejiang University: Science B, 2014, 15, 438-443.	2.8	14
17	Structure and Function of Allophanate Hydrolase. Journal of Biological Chemistry, 2013, 288, 21422-21432.	3.4	26
18	Crystal Structure of Urea Carboxylase Provides Insights into the Carboxyltransfer Reaction. Journal of Biological Chemistry, 2012, 287, 9389-9398.	3.4	31

Song Xiang

#	Article	IF	CITATIONS
19	Structures of 5′–3′ Exoribonucleases. The Enzymes, 2012, 31, 115-129.	1.7	5
20	5′-3′ Exoribonucleases. Nucleic Acids and Molecular Biology, 2011, , 167-192.	0.2	9
21	Structural and biochemical studies of the 5′→3′ exoribonuclease Xrn1. Nature Structural and Molecular Biology, 2011, 18, 270-276.	8.2	98
22	Cryo-EM Analysis Reveals New Insights into the Mechanism of Action of Pyruvate Carboxylase. Structure, 2010, 18, 1300-1310.	3.3	27
23	Identification of a quality-control mechanism for mRNA 5′-end capping. Nature, 2010, 467, 608-611.	27.8	150
24	Crystal structure of the human symplekin–Ssu72–CTD phosphopeptide complex. Nature, 2010, 467, 729-733.	27.8	144
25	Real-time fluorescence detection of exoribonucleases. Rna, 2009, 15, 2057-2062.	3.5	20
26	A Symmetrical Tetramer for S. aureus Pyruvate Carboxylase in Complex with Coenzyme A. Structure, 2009, 17, 823-832.	3.3	55
27	Structure and function of the 5′→3′ exoribonuclease Rat1 and its activating partner Rai1. Nature, 2009, 458, 784-788.	27.8	177
28	A different mechanism for the inhibition of the carboxyltransferase domain of acetyl-coenzyme A carboxylase by tepraloxydim. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 20723-20727.	7.1	55
29	Crystal structures of human and Staphylococcus aureus pyruvate carboxylase and molecular insights into the carboxyltransfer reaction. Nature Structural and Molecular Biology, 2008, 15, 295-302.	8.2	111
30	Crystal Structure of 1-Deoxy-d-xylulose 5-Phosphate Synthase, a Crucial Enzyme for Isoprenoids Biosynthesis. Journal of Biological Chemistry, 2007, 282, 2676-2682.	3.4	159
31	Mutational Analysis ofEscherichia coliMoeA: Two Functional Activities Map to the Active Site Cleftâ€,‡. Biochemistry, 2007, 46, 78-86.	2.5	20
32	Crystal Structure of Human Nicotinamide Riboside Kinase. Structure, 2007, 15, 1005-1013.	3.3	32
33	The Crystal Structure of Yeast Protein Disulfide Isomerase Suggests Cooperativity between Its Active Sites. Cell, 2006, 124, 61-73.	28.9	346
34	The Crystal Structure of Yeast Protein Disulfide Isomerase Suggests Cooperativity between Its Active Sites. Cell, 2006, 124, 1085-1088.	28.9	17
35	The Crystal Structure of Cdc42 in Complex with Collybistin II, a Gephyrin-interacting Guanine Nucleotide Exchange Factor. Journal of Molecular Biology, 2006, 359, 35-46.	4.2	63
36	Structural Insights into Sulfite Oxidase Deficiency. Journal of Biological Chemistry, 2005, 280, 33506-33515.	3.4	73

#	Article	IF	CITATIONS
37	On the Relationship Between Protein Stability and Folding Kinetics: A Comparative Study of the N-terminal Domains of RNase HI, E. coli and Bacillus stearothermophilus L9. Journal of Molecular Biology, 2001, 312, 569-577.	4.2	11
38	The Crystal Structure of Escherichia coli MoeA and Its Relationship to the Multifunctional Protein Gephyrin. Structure, 2001, 9, 299-310.	3.3	103