Gabriella Ficz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2066491/publications.pdf

Version: 2024-02-01

394421 526287 5,577 29 19 27 citations h-index g-index papers 31 31 31 8780 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Dynamic regulation of 5-hydroxymethylcytosine in mouse ES cells and during differentiation. Nature, 2011, 473, 398-402.	27.8	1,035
2	Quantitative Sequencing of 5-Methylcytosine and 5-Hydroxymethylcytosine at Single-Base Resolution. Science, 2012, 336, 934-937.	12.6	850
3	Resetting Transcription Factor Control Circuitry toward Ground-State Pluripotency in Human. Cell, 2014, 158, 1254-1269.	28.9	784
4	Uncovering the role of 5-hydroxymethylcytosine in the epigenome. Nature Reviews Genetics, 2012, 13, 7-13.	16.3	658
5	FGF Signaling Inhibition in ESCs Drives Rapid Genome-wide Demethylation to the Epigenetic Ground State of Pluripotency. Cell Stem Cell, 2013, 13, 351-359.	11.1	371
6	Global Mapping of DNA Methylation in Mouse Promoters Reveals Epigenetic Reprogramming of Pluripotency Genes. PLoS Genetics, 2008, 4, e1000116.	3.5	317
7	A screen for hydroxymethylcytosine and formylcytosine binding proteins suggests functions in transcription and chromatin regulation. Genome Biology, 2013, 14, R119.	9.6	269
8	Data Resource Profile: Accessible Resource for Integrated Epigenomic Studies (ARIES). International Journal of Epidemiology, 2015, 44, 1181-1190.	1.9	238
9	Genome-wide distribution of 5-formylcytosine in embryonic stem cells is associated with transcription and depends on thymine DNA glycosylase. Genome Biology, 2012, 13, R69.	9.6	205
10	Dietary restriction protects from age-associated DNA methylation and induces epigenetic reprogramming of lipid metabolism. Genome Biology, 2017, 18, 56.	8.8	164
11	Breaking the resolution limit in light microscopy. Briefings in Functional Genomics & Proteomics, 2006, 5, 289-301.	3.8	142
12	Retinol and ascorbate drive erasure of epigenetic memory and enhance reprogramming to $na\tilde{A}^-$ ve pluripotency by complementary mechanisms. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12202-12207.	7.1	139
13	Loss of 5-hydroxymethylcytosine in cancer: Cause or consequence?. Genomics, 2014, 104, 352-357.	2.9	100
14	Hit-and-run epigenetic editing prevents senescence entry in primary breast cells from healthy donors. Nature Communications, 2017, 8, 1450.	12.8	86
15	New insights into mechanisms that regulate DNA methylation patterning. Journal of Experimental Biology, 2015, 218, 14-20.	1.7	49
16	Breaking the Resolution Limit in Light Microscopy. Methods in Cell Biology, 2007, 81, 561-580.	1.1	39
17	The Ageing Brain: Effects on DNA Repair and DNA Methylation in Mice. Genes, 2017, 8, 75.	2.4	28
18	Genomic alterations in high-risk chronic lymphocytic leukemia frequently affect cell cycle key regulators and NOTCH1-regulated transcription. Haematologica, 2020, 105, 1379-1390.	3.5	24

#	Article	IF	CITATIONS
19	Breaking the Resolution Limit in Light Microscopy. Methods in Cell Biology, 2013, 114, 525-544.	1.1	23
20	The Influence of Hydroxylation on Maintaining CpG Methylation Patterns: A Hidden Markov Model Approach. PLoS Computational Biology, 2016, 12, e1004905.	3.2	18
21	Transition to na $ ilde{A}$ ve human pluripotency mirrors pan-cancer DNA hypermethylation. Nature Communications, 2020, 11, 3671.	12.8	17
22	Reprogramming by Cell Fusion: Boosted by Tets. Molecular Cell, 2013, 49, 1017-1018.	9.7	7
23	A novel use of random priming-based single-strand library preparation for whole genome sequencing of formalin-fixed paraffin-embedded tissue samples. NAR Genomics and Bioinformatics, 2020, 2, lqz017.	3.2	4
24	A comprehensive approach for genome-wide efficiency profiling of DNA modifying enzymes. Cell Reports Methods, 2022, 2, 100187.	2.9	4
25	The Epigenomic Landscape of Reprogramming in Mammals. , 2009, , 259-282.		3
26	The Biology and Genomic Localization of Cytosine Modifications. Epigenetics and Human Health, 2015, , 167-191.	0.2	1
27	CRISPR/Cas9-Targeted De Novo DNA Methylation Is Maintained and Impacts the Colony Forming Potential of Human Hematopoietic CD34+ Cells. Blood, 2019, 134, 2517-2517.	1.4	1
28	An shRNA kinase screen identifies regulators of UHRF1 stability and activity in mouse embryonic stem cells. Epigenetics, 2022, , 1-18.	2.7	1
29	Corrupted devolution: How normal cells are reborn as cancer precursors. International Journal of Biochemistry and Cell Biology, 2022, 149, 106263.	2.8	O