Alexis C Komor

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/20659/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Combined Theoretical, Bioinformatic, and Biochemical Analyses of RNA Editing by Adenine Base Editors. CRISPR Journal, 2022, 5, 294-310.	2.9	4
2	The use of base editing technology to characterize single nucleotide variants. Computational and Structural Biotechnology Journal, 2022, 20, 1670-1680.	4.1	4
3	Double-tap gene drive uses iterative genome targeting to help overcome resistance alleles. Nature Communications, 2022, 13, 2595.	12.8	6
4	Targeting double-strand break indel byproducts with secondary guide RNAs improves Cas9 HDR-mediated genome editing efficiencies. Nature Communications, 2022, 13, 2351.	12.8	11
5	Base editors: Expanding the types of DNA damage products harnessed for genome editing. Gene and Genome Editing, 2021, 1, 100005.	2.6	19
6	Singleâ€base editing of rs12603332 on Chromosome 17q21 with a Cytosine Base Editor regulates ORMDL3 and ATF6α expression. Allergy: European Journal of Allergy and Clinical Immunology, 2021, , .	5.7	2
7	CRISPR-derived genome editing therapies: Progress from bench to bedside. Molecular Therapy, 2021, 29, 3125-3139.	8.2	14
8	Base editing: advances and therapeutic opportunities. Nature Reviews Drug Discovery, 2020, 19, 839-859.	46.4	218
9	Base Editing in Human Cells to Produce Singleâ€Nucleotideâ€Variant Clonal Cell Lines. Current Protocols in Molecular Biology, 2020, 133, e129.	2.9	4
10	Global chemical effects of the microbiome include new bile-acid conjugations. Nature, 2020, 579, 123-129.	27.8	316
11	Rewriting Human History and Empowering Indigenous Communities with Genome Editing Tools. Genes, 2020, 11, 88.	2.4	9
12	Computer simulations explain mutation-induced effects on the DNA editing by adenine base editors. Science Advances, 2020, 6, eaaz2309.	10.3	18
13	Celebrating Rosalind Franklin's Centennial with a Nobel Win for Doudna and Charpentier. Molecular Therapy, 2020, 28, 2519-2520.	8.2	2
14	Genome, Epigenome, and Transcriptome Editing via Chemical Modification of Nucleobases in Living Cells. Biochemistry, 2019, 58, 330-335.	2.5	10
15	Base editors: modular tools for the introduction of point mutations in living cells. Emerging Topics in Life Sciences, 2019, 3, 483-491.	2.6	15
16	Editing the Genome Without Double-Stranded DNA Breaks. ACS Chemical Biology, 2018, 13, 383-388.	3.4	89
17	Base Editing: Chemistry on the Genome. FASEB Journal, 2018, 32, 649.6.	0.5	0
18	Increasing the genome-targeting scope and precision of base editing with engineered Cas9-cytidine deaminase fusions. Nature Biotechnology, 2017, 35, 371-376.	17.5	609

ALEXIS C KOMOR

#	Article	IF	CITATIONS
19	Improving the DNA specificity and applicability of base editing through protein engineering and protein delivery. Nature Communications, 2017, 8, 15790.	12.8	343
20	Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature, 2017, 551, 464-471.	27.8	2,807
21	Improved base excision repair inhibition and bacteriophage Mu Gam protein yields C:G-to-T:A base editors with higher efficiency and product purity. Science Advances, 2017, 3, eaao4774.	10.3	582
22	CRISPR-Based Technologies for the Manipulation of Eukaryotic Genomes. Cell, 2017, 168, 20-36.	28.9	783
23	Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature, 2016, 533, 420-424.	27.8	3,662
24	An Unusual Ligand Coordination Gives Rise to a New Family of Rhodium Metalloinsertors with Improved Selectivity and Potency. Journal of the American Chemical Society, 2014, 136, 14160-14172.	13.7	39
25	Targeted Chemotherapy with Metal Complexes. Comments on Inorganic Chemistry, 2014, 34, 114-123.	5.2	31
26	The path for metal complexes to a DNA target. Chemical Communications, 2013, 49, 3617.	4.1	325
27	Biological effects of simple changes in functionality on rhodium metalloinsertors. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2013, 371, 20120117.	3.4	14
28	An Inducible, Isogenic Cancer Cell Line System for Targeting the State of Mismatch Repair Deficiency. PLoS ONE, 2013, 8, e78726.	2.5	12
29	Cell-Selective Biological Activity of Rhodium Metalloinsertors Correlates with Subcellular Localization. Journal of the American Chemical Society, 2012, 134, 19223-19233.	13.7	77
30	Selective Cytotoxicity of Rhodium Metalloinsertors in Mismatch Repair-Deficient Cells. Biochemistry, 2011, 50, 10919-10928.	2.5	48
31	A Hydrogen-Bond Facilitated Cycle for Oxygen Reduction by an Acid- and Base-Compatible Iron Platform. Inorganic Chemistry, 2009, 48, 10024-10035.	4.0	51
32	Examination of the Cell Cycle Dependence of Cytosine and Adenine Base Editors. Frontiers in Genome Editing, 0, 4, .	5.2	6