Christina Wege

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2065310/publications.pdf Version: 2024-02-01

CHDISTINA WECE

#	Article	IF	CITATIONS
1	Biotemplate Synthesis of 3-nm Nickel and Cobalt Nanowires. Nano Letters, 2003, 3, 1079-1082.	9.1	397
2	Spatially Selective Nucleation of Metal Clusters on the Tobacco Mosaic Virus. Advanced Functional Materials, 2004, 14, 116-124.	14.9	235
3	Atomic Layer Deposition on Biological Macromolecules:Â Metal Oxide Coating of Tobacco Mosaic Virus and Ferritin. Nano Letters, 2006, 6, 1172-1177.	9.1	200
4	The Impact of Aspect Ratio on the Biodistribution and Tumor Homing of Rigid Softâ€Matter Nanorods. Advanced Healthcare Materials, 2015, 4, 874-882.	7.6	148
5	Copper nanowires within the central channel of tobacco mosaic virus particles. Electrochimica Acta, 2006, 51, 6251-6257.	5.2	123
6	Electrochemical modification of individual nano-objects. Journal of Electroanalytical Chemistry, 2002, 522, 70-74.	3.8	105
7	TeÌ,te aÌ€ TeÌ,te of Tomato Yellow Leaf Curl Virus and Tomato Yellow Leaf Curl Sardinia Virus in Single Nuclei. Journal of Virology, 2004, 78, 10715-10723.	3.4	104
8	Binding the Tobacco Mosaic Virus to Inorganic Surfaces. Langmuir, 2004, 20, 441-447.	3.5	103
9	TMV nanorods with programmed longitudinal domains of differently addressable coat proteins. Nanoscale, 2013, 5, 3808.	5.6	97
10	Interaction of DNA with the Movement Proteins of Geminiviruses Revisited. Journal of Virology, 2004, 78, 7698-7706.	3.4	88
11	A plastid-targeted heat shock cognate 70kDa protein interacts with the Abutilon mosaic virus movement protein. Virology, 2010, 401, 6-17.	2.4	84
12	Virusâ€Templated Synthesis of ZnO Nanostructures and Formation of Fieldâ€Effect Transistors. Advanced Materials, 2011, 23, 4918-4922.	21.0	82
13	Modified TMV Particles as Beneficial Scaffolds to Present Sensor Enzymes. Frontiers in Plant Science, 2015, 6, 1137.	3.6	75
14	Engineered Tobacco mosaic virus mutants with distinct physical characteristics in planta and enhanced metallization properties. Virus Research, 2011, 157, 35-46.	2.2	68
15	Movement Proteins (BC1 and BV1) of Abutilon Mosaic Geminivirus Are Cotransported in and between Cells of Sink but Not of Source Leaves as Detected by Green Fluorescent Protein Tagging. Virology, 2001, 290, 249-260.	2.4	66
16	Plant virus-based materials for biomedical applications: Trends and prospects. Advanced Drug Delivery Reviews, 2019, 145, 96-118.	13.7	66
17	Enhancing the Magnetoviscosity of Ferrofluids by the Addition of Biological Nanotubes. ACS Nano, 2010, 4, 4531-4538.	14.6	65
18	Superresolution imaging of biological nanostructures by spectral precision distance microscopy. Biotechnology Journal, 2011, 6, 1037-1051.	3.5	63

#	Article	lF	CITATIONS
19	M1.3 – a small scaffold for DNA origamiÂ. Nanoscale, 2013, 5, 284-290.	5.6	63
20	Self-Assembly of Metal–Virus Nanodumbbells. Angewandte Chemie - International Edition, 2007, 46, 3149-3151.	13.8	60
21	pH Control of the Electrostatic Binding of Gold and Iron Oxide Nanoparticles to Tobacco Mosaic Virus. Langmuir, 2013, 29, 2094-2098.	3.5	58
22	Tobacco mosaic virus as enzyme nanocarrier for electrochemical biosensors. Sensors and Actuators B: Chemical, 2017, 238, 716-722.	7.8	58
23	Synergism of a DNA and an RNA virus: Enhanced tissue infiltration of the begomovirus Abutilon mosaic virus (AbMV) mediated by Cucumber mosaic virus (CMV). Virology, 2007, 357, 10-28.	2.4	57
24	Inducible Site-Selective Bottom-Up Assembly of Virus-Derived Nanotube Arrays on RNA-Equipped Wafers. ACS Nano, 2011, 5, 4512-4520.	14.6	55
25	Field-Effect Sensors for Virus Detection: From Ebola to SARS-CoV-2 and Plant Viral Enhancers. Frontiers in Plant Science, 2020, 11, 598103.	3.6	55
26	Novel roles for well-known players: from tobacco mosaic virus pests to enzymatically active assemblies. Beilstein Journal of Nanotechnology, 2016, 7, 613-629.	2.8	54
27	Comparative Analysis of Tissue Tropism of Bipartite Geminiviruses. Journal of Phytopathology, 2001, 149, 359-368.	1.0	53
28	TMV Particles: The Journey From Fundamental Studies to Bionanotechnology Applications. Advances in Virus Research, 2018, 102, 149-176.	2.1	52
29	Fulfilling Koch's postulates for Abutilon mosaic virus. Archives of Virology, 2000, 145, 2217-2225.	2.1	51
30	Field-effect biosensor using virus particles as scaffolds for enzyme immobilization. Biosensors and Bioelectronics, 2018, 110, 168-174.	10.1	46
31	Electroless synthesis of 3 nm wide alloy nanowires inside <i>Tobacco mosaic virus</i> . Nanotechnology, 2012, 23, 045603.	2.6	45
32	RNA-controlled assembly of tobacco mosaic virus-derived complex structures: from nanoboomerangs to tetrapods. Nanoscale, 2015, 7, 344-355.	5.6	45
33	Virus-directed formation of electrocatalytically active nanoparticle-based Co ₃ O ₄ tubes. Nanoscale, 2017, 9, 6334-6345.	5.6	44
34	Peptide-equipped tobacco mosaic virus templates for selective and controllable biomineral deposition. Beilstein Journal of Nanotechnology, 2015, 6, 1399-1412.	2.8	42
35	Catalytic coating of virus particles with zinc oxide. Electrochimica Acta, 2009, 54, 5149-5154.	5.2	39
36	In vitro assembly of Tobacco mosaic virus coat protein variants derived from fission yeast expression clones or plants. Journal of Virological Methods, 2010, 166, 77-85.	2.1	39

#	Article	IF	CITATIONS
37	Bottomâ€Upâ€Assembled Nanostar Colloids of Gold Cores and Tubes Derived From Tobacco Mosaic Virus. Angewandte Chemie - International Edition, 2013, 52, 7203-7207.	13.8	39
38	Penicillin Detection by <i>Tobacco Mosaic Virus</i> -Assisted Colorimetric Biosensors. Nanotheranostics, 2018, 2, 184-196.	5.2	39
39	Printing and Aligning Mesoscale Patterns of Tobacco mosaic virus on Surfaces. Advanced Materials, 2008, 20, 2195-2200.	21.0	35
40	New Approaches for Bottom-Up Assembly of Tobacco Mosaic Virus-Derived Nucleoprotein Tubes on Defined Patterns on Silica- and Polymer-Based Substrates. Langmuir, 2012, 28, 14867-14877.	3.5	34
41	Localizing the movement proteins of Abutilon mosaic geminivirus in yeast by subcellular fractionation and freeze-fracture immuno-labelling. Archives of Virology, 2002, 147, 103-117.	2.1	32
42	The movement protein BC1 promotes redirection of the nuclear shuttle protein BV1 of Abutilon mosaic geminivirus to the plasma membrane in fission yeast. Protoplasma, 2007, 230, 117-123.	2.1	32
43	Nanoscale Science and Technology with Plant Viruses and Bacteriophages. Sub-Cellular Biochemistry, 2013, 68, 667-702.	2.4	32
44	Tailoring the surface properties of tobacco mosaic virions by the integration of bacterially expressed mutant coat protein. Virus Research, 2014, 180, 92-96.	2.2	27
45	Synchronization-free all-solid-state laser system for stimulated Raman scattering microscopy. Light: Science and Applications, 2016, 5, e16149-e16149.	16.6	27
46	Yeast two-hybrid systems confirm the membrane- association and oligomerization of BC1 but do not detect an interaction of the movement proteins BC1 and BV1 of Abutilon mosaic geminivirus. Archives of Virology, 2004, 149, 2349-2364.	2.1	26
47	Poinsettia latent virus is not a cryptic virus, but a natural polerovirus–sobemovirus hybrid. Virology, 2005, 336, 240-250.	2.4	25
48	In vivo self-assembly of TMV-like particles in yeast and bacteria for nanotechnological applications. Journal of Virological Methods, 2013, 189, 328-340.	2.1	25
49	Abutilon mosaic virus DNA B component supports mechanical virus transmission, but does not counteract begomoviral phloem limitation in transgenic plants. Virology, 2007, 365, 173-186.	2.4	24
50	From stars to stripes: RNAâ€directed shaping of plant viral protein templates—structural synthetic virology for smart biohybrid nanostructures. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2020, 12, e1591.	6.1	24
51	Synergistic pathogenicity of a phloem-limited begomovirus and tobamoviruses, despite negative interference. Journal of General Virology, 2007, 88, 1034-1040.	2.9	23
52	Abutilon Mosaic Geminivirus Proteins Expressed and Phosphorylated in <i>Escherichia coli</i> . Journal of Phytopathology, 1998, 146, 613-621.	1.0	22
53	Expression dynamics and ultrastructural localization of epitope-tagged Abutilon mosaic virus nuclear shuttle and movement proteins in Nicotiana benthamiana cells. Virology, 2009, 391, 212-220.	2.4	22
54	Cell-free construction of disarmed Abutilon mosaic virus-based gene silencing vectors. Journal of Virological Methods, 2010, 169, 129-137.	2.1	22

#	Article	IF	CITATIONS
55	Dynamic DNA-controlled "stop-and-go―assembly of well-defined protein domains on RNA-scaffolded TMV-like nanotubes. Nanoscale, 2016, 8, 19853-19866.	5.6	21
56	Capacitive Field-Effect Biosensor Studying Adsorption of Tobacco Mosaic Virus Particles. Micromachines, 2021, 12, 57.	2.9	21
57	The distinct disease phenotypes of the common and yellow vein strains of Tomato golden mosaic virus are determined by nucleotide differences in the 3′-terminal region of the gene encoding the movement protein. Journal of General Virology, 2001, 82, 45-51.	2.9	21
58	Movement and localization of Tomato Yellow Leaf Curl Viruses in the Infected Plant. , 2007, , 185-206.		19
59	Preparation and magnetoviscosity of nanotube ferrofluids by viral scaffolding and ALD on porous templates. Physica Status Solidi (B): Basic Research, 2010, 247, 2412-2423.	1.5	19
60	Light-Addressable Actuator-Sensor Platform for Monitoring and Manipulation of pH Gradients in Microfluidics: A Case Study with the Enzyme Penicillinase. Biosensors, 2021, 11, 171.	4.7	18
61	Virus-Templated Near-Amorphous Iron Oxide Nanotubes. Langmuir, 2016, 32, 5899-5908.	3.5	16
62	Detection of plant virus particles with a capacitive field-effect sensor. Analytical and Bioanalytical Chemistry, 2021, 413, 5669-5678.	3.7	15
63	Enzymatic activity of individual bioelectrocatalytic viral nanoparticles: dependence of catalysis on the viral scaffold and its length. Nanoscale, 2022, 14, 875-889.	5.6	15
64	Post-translational modifications of Abutilon mosaic virus movement protein (BC1) in fission yeast. Virus Research, 2008, 131, 86-94.	2.2	14
65	Begomoviral Movement Protein Effects in Human and Plant Cells: Towards New Potential Interaction Partners. Viruses, 2017, 9, 334.	3.3	14
66	Apertureless scanning near-field optical microscopy of sparsely labeled tobacco mosaic viruses and the intermediate filament desmin. Beilstein Journal of Nanotechnology, 2013, 4, 510-516.	2.8	12
67	Early Function of the Abutilon Mosaic Virus AC2 Gene as a Replication Brake. Journal of Virology, 2015, 89, 3683-3699.	3.4	12
68	A Population Genetics Perspective on Geminivirus Infection. Journal of Virology, 2015, 89, 11926-11934.	3.4	11
69	Biogenic and Synthetic Peptides with Oppositely Charged Amino Acids as Binding Sites for Mineralization. Materials, 2017, 10, 119.	2.9	11
70	Towards Multi-Analyte Detection with Field-Effect Capacitors Modified with Tobacco Mosaic Virus Bioparticles as Enzyme Nanocarriers. Biosensors, 2022, 12, 43.	4.7	11
71	Precise Assembly of Genetically Functionalized Magnetosomes and Tobacco Mosaic Virus Particles Generates a Magnetic Biocomposite. ACS Applied Materials & Interfaces, 2018, 10, 37898-37910.	8.0	10
72	RNA viruses and their silencing suppressors boost Abutilon mosaic virus, but not the Old World Tomato yellow leaf curl Sardinia virus. Virus Research, 2011, 161, 170-180.	2.2	9

#	Article	IF	CITATIONS
73	Cloned tomato golden mosaic virus back in tomatoes. Virus Research, 2012, 167, 397-403.	2.2	9
74	Covalent incorporation of tobacco mosaic virus increases the stiffness of poly(ethylene glycol) diacrylate hydrogels. RSC Advances, 2018, 8, 4686-4694.	3.6	9
75	Bioinspired Silica Mineralization on Viral Templates. Methods in Molecular Biology, 2018, 1776, 337-362.	0.9	8
76	Building expanded structures from tetrahedral DNA branching elements, RNA and TMV protein. Nanoscale, 2018, 10, 6496-6510.	5.6	7
77	Electrochemically-Driven Insertion of Biological Nanodiscs into Solid State Membrane Pores as a Basis for "Pore-In-Pore―Membranes. Nanomaterials, 2018, 8, 237.	4.1	7
78	TMV-Based Adapter Templates for Enhanced Enzyme Loading in Biosensor Applications. Methods in Molecular Biology, 2018, 1776, 553-568.	0.9	7
79	Application perspectives of localization microscopy in virology. Histochemistry and Cell Biology, 2014, 142, 43-59.	1.7	6
80	RNA-stabilized protein nanorings: high-precision adapters for biohybrid design. Bioinspired, Biomimetic and Nanobiomaterials, 2017, 6, 208-223.	0.9	6
81	Virus-Derived Nanoparticles for Advanced Technologies. Methods in Molecular Biology, 2018, , .	0.9	6
82	A New Class of Biosensors Based on Tobacco Mosaic Virus and Coat Proteins as Enzyme Nanocarrier. Procedia Engineering, 2016, 168, 618-621.	1.2	5
83	Dual Functionalization of Rod-Shaped Viruses on Single Coat Protein Subunits. Methods in Molecular Biology, 2018, 1776, 405-424.	0.9	5
84	Hydrophobization of Tobacco Mosaic Virus to Control the Mineralization of Organic Templates. Nanomaterials, 2019, 9, 800.	4.1	5
85	Phosphorylations of the Abutilon Mosaic Virus Movement Protein Affect Its Self-Interaction, Symptom Development, Viral DNA Accumulation, and Host Range. Frontiers in Plant Science, 2020, 11, 1155.	3.6	5
86	Detection of Acetoin and Diacetyl by a Tobacco Mosaic Virus-Assisted Field-Effect Biosensor. Chemosensors, 2022, 10, 218.	3.6	5
87	Field-Effect Biosensors Modified with Tobacco Mosaic Virus Nanotubes as Enzyme Nanocarrier. Proceedings (mdpi), 2017, 1, .	0.2	4
88	The Effect of Pooling on the Detection of the Nucleocapsid Protein of SARS-CoV-2 with Rapid Antigen Tests. Diagnostics, 2021, 11, 1290.	2.6	4
89	Plant virus hybrid materials based on tobacco mosaic virus and small organic cross-linkers. Bioinspired, Biomimetic and Nanobiomaterials, 2018, 7, 187-193.	0.9	2
90	Improved manufacture of hybrid membranes with bionanopore adapters capable of self-luting. Bioinspired, Biomimetic and Nanobiomaterials, 2019, 8, 47-71.	0.9	2

#	Article	IF	CITATIONS
91	Learning from sea shells – bio-inspired approaches toward mesoscale architectures in functional spinel oxides. Acta Crystallographica Section A: Foundations and Advances, 2016, 72, s55-s56.	0.1	1
92	Bottom-Up Assembly of TMV-Based Nucleoprotein Architectures on Solid Supports. Methods in Molecular Biology, 2018, 1776, 169-186.	0.9	1
93	Cover Image, Volume 12, Issue 2. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2020, 12, e1620.	6.1	0
94	P1BS.8 - Enzyme Biosensor Based on Tobacco Mosaic Virus-Modified Field-Effect Structures. , 2018, , .		0
95	High-Density Immobilization of Tobacco Mosaic Virus Nanotubes As Enzyme Nanocarriers Onto Field-Effect Biosensor Structures. ECS Meeting Abstracts, 2020, MA2020-01, 2484-2484.	0.0	0
96	Studying the immobilization of acetoin reductase with Tobacco mosaic virus particles on capacitive field-effect sensors. , 2022, , .		0