
Claudia Cerella

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2064036/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cytotoxicity of glucoevatromonoside alone and in combination with chemotherapy drugs and their effects on Na+,K+-ATPase and ion channels on lung cancer cells. Molecular and Cellular Biochemistry, 2021, 476, 1825-1848.	3.1	3
2	Anti-Leukemic Properties of Aplysinopsin Derivative EE-84 Alone and Combined to BH3 Mimetic A-1210477. Marine Drugs, 2021, 19, 285.	4.6	10
3	Phytochemical Screening and Antioxidant and Cytotoxic Effects of Acacia macrostachya. Plants, 2021, 10, 1353.	3.5	4
4	BH3 Mimetics in AML Therapy: Death and Beyond?. Trends in Pharmacological Sciences, 2020, 41, 793-814.	8.7	18
5	Investigation of the cytotoxic activity of two novel digitoxigenin analogues on H460 lung cancer cells. Anti-Cancer Drugs, 2020, 31, 452-462.	1.4	5
6	Tetrahydrobenzimidazole TMQ0153 triggers apoptosis, autophagy and necroptosis crosstalk in chronic myeloid leukemia. Cell Death and Disease, 2020, 11, 109.	6.3	21
7	Petromurin C Induces Protective Autophagy and Apoptosis in FLT3-ITD-Positive AML: Synergy with Gilteritinib. Marine Drugs, 2020, 18, 57.	4.6	9
8	Elucidation of the mechanism of anti-herpes action of two novel semisynthetic cardenolide derivatives. Archives of Virology, 2020, 165, 1385-1396.	2.1	9
9	Potential anti-herpes and cytotoxic action of novel semisynthetic digitoxigenin-derivatives. European Journal of Medicinal Chemistry, 2019, 167, 546-561.	5.5	17
10	Hydroquinone-Derivatives Induce Cell Death in Chronic Myelogenous Leukemia. Proceedings (mdpi), 2019, 11, 28.	0.2	0
11	Targeted Anticancer Strategies with Garlic Derivatives. Proceedings (mdpi), 2019, 11, 29.	0.2	0
12	The dialkyl resorcinol stemphol disrupts calcium homeostasis to trigger programmed immunogenic necrosis in cancer. Cancer Letters, 2018, 416, 109-123.	7.2	20
13	Natural scaffolds in anticancer therapy and precision medicine. Biotechnology Advances, 2018, 36, 1563-1585.	11.7	35
14	Cytostatic hydroxycoumarin OT52 induces ER/Golgi stress and STAT3 inhibition triggering non-canonical cell death and synergy with BH3 mimetics in lung cancer. Cancer Letters, 2018, 416, 94-108.	7.2	35
15	Biotinylation enhances the anticancer effects of 15d‑PGJ2 against breast cancer cells. International Journal of Oncology, 2018, 52, 1991-2000.	3.3	3
16	Hydroxycoumarin OT-55 kills CML cells alone or in synergy with imatinib or Synribo: Involvement of ER stress and DAMP release. Cancer Letters, 2018, 438, 197-218.	7.2	29
17	Cardiac Glycoside Glucoevatromonoside Induces Cancer Type-Specific Cell Death. Frontiers in Pharmacology, 2018, 9, 70.	3.5	28
18	Cytotoxicity of AMANTADIG – a semisynthetic digitoxigenin derivative – alone and in combination with docetaxel in human hormone-refractory prostate cancer cells and its effect on Na+/K+-ATPase inhibition. Biomedicine and Pharmacotherapy, 2018, 107, 464-474.	5.6	13

#	Article	IF	CITATIONS
19	Tubulin-binding anticancer polysulfides induce cell death via mitotic arrest and autophagic interference in colorectal cancer. Cancer Letters, 2017, 410, 139-157.	7.2	21
20	Cardiac glycosides: From molecular targets to immunogenic cell death. Biochemical Pharmacology, 2017, 125, 1-11.	4.4	86
21	Bcl-2 protein family expression pattern determines synergistic pro-apoptotic effects of BH3 mimetics with hemisynthetic cardiac glycoside UNBS1450 in acute myeloid leukemia. Leukemia, 2017, 31, 755-759.	7.2	20
22	Anticancer and Immunogenic Properties of Cardiac Glycosides. Molecules, 2017, 22, 1932.	3.8	90
23	Garlic-derived natural polysulfanes as hydrogen sulfide donors: Friend or foe?. Food and Chemical Toxicology, 2016, 95, 219-233.	3.6	45
24	Non-canonical programmed cell death mechanisms triggered by natural compounds. Seminars in Cancer Biology, 2016, 40-41, 4-34.	9.6	79
25	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
26	Cell type-dependent ROS and mitophagy response leads to apoptosis or necroptosis in neuroblastoma. Oncogene, 2016, 35, 3839-3853.	5.9	73
27	Roles of Apoptosis and Cellular Senescence in Cancer and Aging. Current Drug Targets, 2016, 17, 405-415.	2.1	39
28	PPARγâ€inactive Δ2â€troglitazone independently triggers ER stress and apoptosis in breast cancer cells. Molecular Carcinogenesis, 2015, 54, 393-404.	2.7	18
29	Cytotoxic, Antiproliferative and Pro-Apoptotic Effects of 5-Hydroxyl-6,7,3′,4′,5′-Pentamethoxyflavone Isolated from Lantana ukambensis. Nutrients, 2015, 7, 10388-10397.	4.1	12
30	A novel coumarinâ€quinone derivative SV37 inhibits CDC25 phosphatases, impairs proliferation, and induces cell death. Molecular Carcinogenesis, 2015, 54, 229-241.	2.7	29
31	Tanzawaic acids isolated from a marine-derived fungus of the genus Penicillium with cytotoxic activities. Organic and Biomolecular Chemistry, 2015, 13, 7248-7256.	2.8	32
32	Early downregulation of Mcl-1 regulates apoptosis triggered by cardiac glycoside UNBS1450. Cell Death and Disease, 2015, 6, e1782-e1782.	6.3	62
33	A Survey of Marine Natural Compounds and Their Derivatives with Anti-Cancer Activity Reported in 2012. Molecules, 2015, 20, 7097-7142.	3.8	49
34	Oximoaspergillimide, a Fungal Derivative from a Marine Isolate of <i>Aspergillus</i> sp European Journal of Organic Chemistry, 2015, 2015, 2256-2261.	2.4	21
35	2,5-Dimethyl-Celecoxib Inhibits Cell Cycle Progression and Induces Apoptosis in Human Leukemia Cells. Journal of Pharmacology and Experimental Therapeutics, 2015, 355, 308-328.	2.5	23
36	Antagonistic role of natural compounds in mTOR-mediated metabolic reprogramming. Cancer Letters, 2015, 356, 251-262.	7.2	20

#	Article	IF	CITATIONS
37	Celecoxib prevents curcuminâ€induced apoptosis in a hematopoietic cancer cell model. Molecular Carcinogenesis, 2015, 54, 999-1013.	2.7	9
38	Effects of Natural Products on Mcl-1 Expression and Function. Current Medicinal Chemistry, 2015, 22, 3447-3461.	2.4	9
39	Plumbagin Modulates Leukemia Cell Redox Status. Molecules, 2014, 19, 10011-10032.	3.8	24
40	From nature to bedside: Pro-survival and cell death mechanisms as therapeutic targets in cancer treatment. Biotechnology Advances, 2014, 32, 1111-1122.	11.7	67
41	Synthetic polysulfane derivatives induce cell cycle arrest and apoptotic cell death in human hematopoietic cancer cells. Food and Chemical Toxicology, 2014, 64, 249-257.	3.6	42
42	246: Effects of the potential energy restriction mimetic agent delta2-troglitazone in breast cancer cells. European Journal of Cancer, 2014, 50, S57-S58.	2.8	0
43	Energy restriction mimetic agents to target cancer cells: Comparison between 2-deoxyglucose and thiazolidinediones. Biochemical Pharmacology, 2014, 92, 102-111.	4.4	18
44	Modulatory roles of glycolytic enzymes in cell death. Biochemical Pharmacology, 2014, 92, 22-30.	4.4	30
45	Cardiac glycosides in cancer therapy: from preclinical investigations towards clinical trials. Investigational New Drugs, 2013, 31, 1087-1094.	2.6	133
46	Assembling the puzzle of anti-cancer mechanisms triggered by cardiac glycosides. Mitochondrion, 2013, 13, 225-234.	3.4	95
47	Styryl-lactone goniothalamin inhibits TNF-α-induced NF-κB activation. Food and Chemical Toxicology, 2013, 59, 572-578.	3.6	32
48	A Survey of Marine Natural Compounds and Their Derivatives with Anti-Cancer Activity Reported in 2011. Molecules, 2013, 18, 3641-3673.	3.8	70
49	Metabolism and Cancer: Old and New Players. International Journal of Cell Biology, 2013, 2013, 1-2.	2.5	5
50	Natural Compounds as Regulators of the Cancer Cell Metabolism. International Journal of Cell Biology, 2013, 2013, 1-16.	2.5	49
51	Anti HSV-1 Activity of Halistanol Sulfate and Halistanol Sulfate C Isolated from Brazilian Marine Sponge Petromica citrina (Demospongiae). Marine Drugs, 2013, 11, 4176-4192.	4.6	21
52	Cytotoxic Effect and NF-κB Inhibition of Fractions from Lantana ukambensis (Verbenacea). Planta Medica, 2013, 79, .	1.3	1
53	ROS-independent JNK activation and multisite phosphorylation of Bcl-2 link diallyl tetrasulfide-induced mitotic arrest to apoptosis. Carcinogenesis, 2012, 33, 2162-2171.	2.8	70
54	Magnetic fields promote a pro-survival non-capacitative Ca2+ entry via phospholipase C signaling. International Journal of Biochemistry and Cell Biology, 2011, 43, 393-400.	2.8	22

#	Article	IF	CITATIONS
55	Antiherpes activity of glucoevatromonoside, a cardenolide isolated from a Brazilian cultivar of Digitalis lanata. Antiviral Research, 2011, 92, 73-80.	4.1	78
56	UNBS1450, a steroid cardiac glycoside inducing apoptotic cell death in human leukemia cells. Biochemical Pharmacology, 2011, 81, 13-23.	4.4	86
57	COX-2 inhibitors block chemotherapeutic agent-induced apoptosis prior to commitment in hematopoietic cancer cells. Biochemical Pharmacology, 2011, 82, 1277-1290.	4.4	20
58	Anti-inflammatory, pro-apoptotic, and anti-proliferative effects of a methanolic neem (Azadirachta) Tj ETQq0 0 C 2011, 6, 149-160.) rgBT /Ove 2.5	erlock 10 Tf 50 98
59	Chemical Properties and Mechanisms Determining the Anti-Cancer Action of Garlic-Derived Organic Sulfur Compounds. Anti-Cancer Agents in Medicinal Chemistry, 2011, 11, 267-271.	1.7	66
60	Cox-2 inhibitors induce early c-Myc downregulation and lead to expression of differentiation markers in leukemia cells. Cell Cycle, 2011, 10, 2978-2993.	2.6	23
61	Quercetin downregulates Mcl-1 by acting on mRNA stability and protein degradation. British Journal of Cancer, 2011, 105, 221-230.	6.4	48
62	Abstract LB-277: Dynamic functional analysis of the response of cancer cell lines to the drug UNBS1450. , 2011, , .		0
63	Targeting inflammatory cell signaling mechanisms: a promising road to new therapeutic agents in chemoprevention and cancer therapy. Journal of Experimental Therapeutics and Oncology, 2011, 9, 1-4.	0.5	11
64	Diallylpolysulfides induce growth arrest and apoptosis. International Journal of Oncology, 2010, 36, 743-9.	3.3	16
65	Heteronemin, a spongean sesterterpene, inhibits TNFα-induced NF-κB activation through proteasome inhibition and induces apoptotic cell death. Biochemical Pharmacology, 2010, 79, 610-622.	4.4	85
66	Targeting COX-2 expression by natural compounds: A promising alternative strategy to synthetic COX-2 inhibitors for cancer chemoprevention and therapy. Biochemical Pharmacology, 2010, 80, 1801-1815.	4.4	100
67	The Role of Cyclooxygenase-2 in Cell Proliferation and Cell Death in Human Malignancies. International Journal of Cell Biology, 2010, 2010, 1-21.	2.5	345
68	The Dual Role of Calcium as Messenger and Stressor in Cell Damage, Death, and Survival. International Journal of Cell Biology, 2010, 2010, 1-14.	2.5	135
69	Rapid and transient stimulation of intracellular reactive oxygen species by melatonin in normal and tumor leukocytes. Toxicology and Applied Pharmacology, 2009, 239, 37-45.	2.8	58
70	Cell cycle arrest in early mitosis and induction of caspase-dependent apoptosis in U937 cells by diallyltetrasulfide (Al2S4). Apoptosis: an International Journal on Programmed Cell Death, 2009, 14, 641-654.	4.9	49
71	Subapoptogenic Oxidative Stress Strongly Increases the Activity of the Glycolytic Key Enzyme Glyceraldehyde 3â€Phosphate Dehydrogenase. Annals of the New York Academy of Sciences, 2009, 1171, 583-590.	3.8	24
72	Intracellular Prooxidant Activity of Melatonin Induces a Survival Pathway Involving NFâ€₽B Activation. Annals of the New York Academy of Sciences, 2009, 1171, 472-478.	3.8	53

#	Article	IF	CITATIONS
73	Multiple Mechanisms for Hydrogen Peroxide–Induced Apoptosis. Annals of the New York Academy of Sciences, 2009, 1171, 559-563.	3.8	29
74	Melatonin antagonizes the intrinsic pathway of apoptosis via mitochondrial targeting of Bclâ€2. Journal of Pineal Research, 2008, 44, 316-325.	7.4	110
75	Novel job opportunities in cell death!. Biochemical Pharmacology, 2008, 76, 1307-1309.	4.4	1
76	Effect of different carbon nanotubes on cell viability and proliferation. Journal of Physics Condensed Matter, 2007, 19, 395013.	1.8	36
77	Melatonin antagonizes apoptosis via receptor interaction in U937 monocytic cells. Journal of Pineal Research, 2007, 43, 154-162.	7.4	62
78	Analysis of Calcium Changes in Endoplasmic Reticulum during Apoptosis by the Fluorescent Indicator Chlortetracycline. Annals of the New York Academy of Sciences, 2007, 1099, 490-493.	3.8	6
79	Redox Modulation of the Apoptogenic Activity of Thapsigargin. Annals of the New York Academy of Sciences, 2007, 1099, 469-472.	3.8	3
80	Non-apoptogenic Ca2+-Related Extrusion of Mitochondria in Anoxia/Reoxygenation Stress. Annals of the New York Academy of Sciences, 2007, 1099, 512-515.	3.8	9
81	Sequential phases of Ca2+ alterations in pre-apoptotic cells. Apoptosis: an International Journal on Programmed Cell Death, 2007, 12, 2207-2219.	4.9	13
82	Molecular Determinants Involved in the Increase of Damage-Induced Apoptosis and Delay of Secondary Necrosis due to Inhibition of Mono(ADP-Ribosyl)ation. Annals of the New York Academy of Sciences, 2006, 1090, 50-58.	3.8	3
83	Magnetic Fields Protect from Apoptosis via Redox Alteration. Annals of the New York Academy of Sciences, 2006, 1090, 59-68.	3.8	47
84	The Cleavage Mode of Apoptotic Nuclear Vesiculation Is Related to Plasma Membrane Blebbing and Depends on Actin Reorganization. Annals of the New York Academy of Sciences, 2006, 1090, 69-78.	3.8	8
85	Hyperpolarization of Plasma Membrane of Tumor Cells Sensitive to Antiapoptotic Effects of Magnetic Fields. Annals of the New York Academy of Sciences, 2006, 1090, 217-225.	3.8	26
86	Melatonin as an Apoptosis Antagonist. Annals of the New York Academy of Sciences, 2006, 1090, 226-233.	3.8	24
87	Oxidative Upregulation of Bcl-2 in Healthy Lymphocytes. Annals of the New York Academy of Sciences, 2006, 1091, 1-9.	3.8	6
88	Intracellular Pro-oxidant Activity of Melatonin Deprives U937 Cells of Reduced Glutathione without Affecting Glutathione Peroxidase Activity. Annals of the New York Academy of Sciences, 2006, 1091, 10-16.	3.8	32
89	NMR exposure sensitizes tumor cells to apoptosis. Apoptosis: an International Journal on Programmed Cell Death, 2006, 11, 359-365.	4.9	41
90	Different fates of intracellular glutathione determine different modalities of apoptotic nuclear vesiculation. Biochemical Pharmacology, 2006, 72, 1405-1416.	4.4	18

#	Article	IF	CITATIONS
91	Proapoptotic Activity of New Glutathione S-Transferase Inhibitors. Cancer Research, 2005, 65, 3751-3761.	0.9	109
92	Oxidative Bax dimerization promotes its translocation to mitochondria independently of apoptosis. FASEB Journal, 2005, 19, 1504-1506.	0.5	120
93	Glutathione depletion upâ€regulates Bclâ€2 in BSOâ€resistant cells. FASEB Journal, 2004, 18, 1609-1611.	0.5	47
94	Cytosolic and Endoplasmic Reticulum Ca2+Concentrations Determine the Extent and the Morphological Type of Apoptosis, Respectively. Annals of the New York Academy of Sciences, 2003, 1010, 74-77.	3.8	20
95	Hypoxic Stress Stably Alters Apoptotic Parameters on U937 Cells. Annals of the New York Academy of Sciences, 2003, 1010, 426-429.	3.8	0
96	Rescue of Cells from Apoptosis by Antioxidants Occurs Downstream from GSH Extrusion. Annals of the New York Academy of Sciences, 2003, 1010, 441-445.	3.8	13
97	Apoptotic GSH Extrusion Is Associated with Free Radical Generation. Annals of the New York Academy of Sciences, 2003, 1010, 449-452.	3.8	30
98	Static magnetic fields affect calcium fluxes and inhibit stress-induced apoptosis in human glioblastoma cells. Cytometry, 2002, 49, 143-149.	1.8	57
99	Naturally Occurring Organic Sulfur Compounds: An Example of a Multitasking Class of Phytochemicals in Anti-Cancer Research. , 0, , .		11