List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2063765/publications.pdf Version: 2024-02-01

		115	209
387	102,284	163	311
papers	citations	h-index	g-index
394	394	394	43376
all docs	docs citations	times ranked	citing authors

REI CHENC

#	Article	IF	CITATIONS
1	TiO2/In2S3 S-scheme photocatalyst with enhanced H2O2-production activity. Nano Research, 2023, 16, 4506-4514.	10.4	85
2	C ₃ N ₄ /PDA S‣cheme Heterojunction with Enhanced Photocatalytic H ₂ O ₂ Production Performance and Its Mechanism. Advanced Sustainable Systems, 2023, 7, .	5.3	47
3	Sulfideâ€Based Nickelâ€Plated Fabrics for Foldable Quasiâ€Solidâ€State Supercapacitors. Energy and Environmental Materials, 2022, 5, 883-891.	12.8	19
4	BiOBr/NiO S‣cheme Heterojunction Photocatalyst for CO ₂ Photoreduction. Solar Rrl, 2022, 6, 2100587.	5.8	96
5	EPR Investigation on Electron Transfer of 2D/3D gâ€C ₃ N ₄ /ZnO Sâ€6cheme Heterojunction for Enhanced CO ₂ Photoreduction. Advanced Sustainable Systems, 2022, 6, 2100264.	5.3	112
6	Inorganic Metalâ€Oxide Photocatalyst for H ₂ O ₂ Production. Small, 2022, 18, e2104561.	10.0	152
7	Optimizing Atomic Hydrogen Desorption of Sulfurâ€Rich NiS ₁₊ <i>_x</i> Cocatalyst for Boosting Photocatalytic H ₂ Evolution. Advanced Materials, 2022, 34, e2108475.	21.0	156
8	Metal–organic framework with atomically dispersed Ni–N4 sites for greatly-raised visible-light photocatalytic H2 production. Chemical Engineering Journal, 2022, 431, 133944.	12.7	20
9	Synthesis of MgNiCo LDH hollow structure derived from ZIF-67 as superb adsorbent for Congo red. Journal of Colloid and Interface Science, 2022, 612, 598-607.	9.4	83
10	Solar fuel generation over nature-inspired recyclable TiO2/g-C3N4 S-scheme hierarchical thin-film photocatalyst. Journal of Materials Science and Technology, 2022, 112, 1-10.	10.7	101
11	Emerging Sâ€Scheme Photocatalyst. Advanced Materials, 2022, 34, e2107668.	21.0	717
12	Sandwich‧hell Structured CoMn ₂ O ₄ /C Hollow Nanospheres for Performanceâ€Enhanced Sodiumâ€ion Hybrid Supercapacitor. Advanced Energy Materials, 2022, 12, .	19.5	101
13	Modulating the Electronic Metalâ€Support Interactions in Singleâ€Atom Pt ₁ â^'CuO Catalyst for Boosting Acetone Oxidation. Angewandte Chemie, 2022, 134, .	2.0	4
14	Step-by-Step Mechanism Insights into the TiO ₂ /Ce ₂ S ₃ S-Scheme Photocatalyst for Enhanced Aniline Production with Water as a Proton Source. ACS Catalysis, 2022, 12, 164-172.	11.2	117
15	A Comparative Study of Cobalt Chalcogenides as the Electrode Materials on Lithiumâ€Sulfur Battery Performance. Small Methods, 2022, 6, e2101269.	8.6	14
16	Synergy between Platinum and Gold Nanoparticles in Oxygen Activation for Enhanced Roomâ€Temperature Formaldehyde Oxidation. Advanced Functional Materials, 2022, 32, .	14.9	37
17	Non-Noble Plasmonic Metal-Based Photocatalysts. Chemical Reviews, 2022, 122, 10484-10537.	47.7	268
	Promoting intramolecular charge transfer of graphitic carbon nitride by donor–acceptor		

Promoting intramolecular charge transfer of graphitic carbon nitride by donor–acceptor modulation for visibleâ€light photocatalytic H₂ evolution., 2022, 1, 294-308.

92

#	Article	IF	CITATIONS
19	Designing a Redox Heterojunction for Photocatalytic "Overall Nitrogen Fixation―under Mild Conditions. Advanced Materials, 2022, 34, e2200563.	21.0	71
20	Dynamics of Photogenerated Charge Carriers in Inorganic/Organic S-Scheme Heterojunctions. Journal of Physical Chemistry Letters, 2022, 13, 4695-4700.	4.6	62
21	Graphene oxide-based modified electrodes for high-performance supercapacitors. , 2022, , 239-266.		0
22	Graphene oxide-based photocatalysts for CO2 reduction. , 2022, , 93-134.		0
23	Graphene oxide-based photocatalysts for H2 production. , 2022, , 65-92.		1
24	H2O molecule adsorption on s-triazine-based g-C3N4. Chinese Journal of Catalysis, 2021, 42, 115-122.	14.0	42
25	Zn Cd1–S quantum dot with enhanced photocatalytic H2-production performance. Chinese Journal of Catalysis, 2021, 42, 15-24.	14.0	79
26	Sulfur-doped g-C3N4/TiO2 S-scheme heterojunction photocatalyst for Congo Red photodegradation. Chinese Journal of Catalysis, 2021, 42, 56-68.	14.0	493
27	Review on nickel-based adsorption materials for Congo red. Journal of Hazardous Materials, 2021, 403, 123559.	12.4	148
28	S-scheme heterojunction based on p-type ZnMn2O4 and n-type ZnO with improved photocatalytic CO2 reduction activity. Chemical Engineering Journal, 2021, 409, 127377.	12.7	269
29	Synthesis of reduced graphene oxide supported nickel-cobalt-layered double hydroxide nanosheets for supercapacitors. Journal of Colloid and Interface Science, 2021, 588, 637-645.	9.4	156
30	Design of highly-active photocatalytic materials for solar fuel production. Chemical Engineering Journal, 2021, 421, 127732.	12.7	27
31	Significant capacitance enhancement induced by cyclic voltammetry in pine needle-like Ni-Co-Cu multicomponent electrode. Journal of Materials Science and Technology, 2021, 78, 100-109.	10.7	13
32	One‣tep Realization of Crystallization and Cyanoâ€Group Generation for g ₃ N ₄ Photocatalysts with Improved H ₂ Production. Solar Rrl, 2021, 5, 2000372.	5.8	91
33	Electrospun TiO ₂ â€Based Photocatalysts. Solar Rrl, 2021, 5, 2000571.	5.8	46
34	Design, Fabrication, and Mechanism of Nitrogenâ€Doped Grapheneâ€Based Photocatalyst. Advanced Materials, 2021, 33, e2003521.	21.0	324
35	Nearâ€Infraredâ€Responsive Photocatalysts. Small Methods, 2021, 5, e2001042.	8.6	84
36	Enhanced solar-to-chemical energy conversion of graphitic carbon nitride by two-dimensional cocatalysts. EnergyChem, 2021, 3, 100051.	19.1	87

#	Article	IF	CITATIONS
37	Triethylamine gas sensor based on Pt-functionalized hierarchical ZnO microspheres. Sensors and Actuators B: Chemical, 2021, 331, 129425.	7.8	174
38	In Situ Synthesis of Mo ₂ C Nanoparticles on Graphene Nanosheets for Enhanced Photocatalytic H ₂ -Production Activity of TiO ₂ . ACS Sustainable Chemistry and Engineering, 2021, 9, 3828-3837.	6.7	56
39	An Inorganic/Organic Sâ€5cheme Heterojunction H ₂ â€Production Photocatalyst and its Charge Transfer Mechanism. Advanced Materials, 2021, 33, e2100317.	21.0	528
40	Enhanced photocatalytic activity and mechanism of CeO2 hollow spheres for tetracycline degradation. Rare Metals, 2021, 40, 2369-2380.	7.1	44
41	A 3D Hierarchical Ti ₃ C ₂ T _x /TiO ₂ Heterojunction for Enhanced Photocatalytic CO ₂ Reduction. ChemNanoMat, 2021, 7, 910-915.	2.8	14
42	In-situ growth of few-layer graphene on ZnO with intimate interfacial contact for enhanced photocatalytic CO2 reduction activity. Chemical Engineering Journal, 2021, 411, 128501.	12.7	99
43	A high-response formaldehyde sensor based on fibrous Ag-ZnO/In2O3 with multi-level heterojunctions. Journal of Hazardous Materials, 2021, 413, 125352.	12.4	97
44	0D/2D NiS/CdS nanocomposite heterojunction photocatalyst with enhanced photocatalytic H2 evolution activity. Applied Surface Science, 2021, 554, 149622.	6.1	48
45	Influence of calcination temperature on photocatalytic H ₂ O ₂ productivity of hierarchical porous ZnO microspheres. Nanotechnology, 2021, 32, 415402.	2.6	10
46	Enhancement in the photocatalytic H2 production activity of CdS NRs by Ag2S and NiS dual cocatalysts. Applied Catalysis B: Environmental, 2021, 288, 119994.	20.2	189
47	Sustained CO2-photoreduction activity and high selectivity over Mn, C-codoped ZnO core-triple shell hollow spheres. Nature Communications, 2021, 12, 4936.	12.8	159
48	Tuning the strength of built-in electric field in 2D/2D g-C3N4/SnS2 and g-C3N4/ZrS2 S-scheme heterojunctions by nonmetal doping. Journal of Materiomics, 2021, 7, 988-997.	5.7	77
49	g ₃ N ₄ â€Based 2D/2D Composite Heterojunction Photocatalyst. Small Structures, 2021, 2, 2100086.	12.0	127
50	In situ Irradiated XPS Investigation on Sâ€5cheme TiO ₂ @ZnIn ₂ S ₄ Photocatalyst for Efficient Photocatalytic CO ₂ Reduction. Small, 2021, 17, e2103447.	10.0	449
51	CsPbBr ₃ Nanocrystal Induced Bilateral Interface Modification for Efficient Planar Perovskite Solar Cells. Advanced Science, 2021, 8, e2102648.	11.2	92
52	Potassium/oxygen co-doped polymeric carbon nitride for enhanced photocatalytic CO2 reduction. Applied Surface Science, 2021, 563, 150310.	6.1	18
53	0D/2D CdS/ZnO composite with n-n heterojunction for efficient detection of triethylamine. Journal of Colloid and Interface Science, 2021, 600, 898-909.	9.4	44
54	Enhanced performance of CH3NH3PbI3 perovskite solar cells by excess halide modification. Applied Surface Science, 2021, 564, 150464.	6.1	18

#	Article	IF	CITATIONS
55	Selective modification of ultra-thin g-C3N4 nanosheets on the (110) facet of Au/BiVO4 for boosting photocatalytic H2O2 production. Applied Catalysis B: Environmental, 2021, 297, 120414.	20.2	63
56	Photocatalytic H ₂ Evolution Coupled with Furfuralcohol Oxidation over Ptâ€Modified ZnCdS Solid Solution. Small Methods, 2021, 5, e2100979.	8.6	79
57	Core–Shell Structured C@SiO ₂ Hollow Spheres Decorated with Nickel Nanoparticles as Anode Materials for Lithiumâ€ion Batteries. Small, 2021, 17, e2103673.	10.0	43
58	Hierarchically Porous ZnO/g-C ₃ N ₄ S-Scheme Heterojunction Photocatalyst for Efficient H ₂ O ₂ Production. Langmuir, 2021, 37, 14114-14124.	3.5	165
59	In Situ Transformation of Prussianâ€Blue Analogueâ€Derived Bimetallic Carbide Nanocubes by Water Oxidation: Applications for Energy Storage and Conversion. Chemistry - A European Journal, 2020, 26, 4052-4062.	3.3	23
60	Product selectivity of photocatalytic CO2 reduction reactions. Materials Today, 2020, 32, 222-243.	14.2	719
61	Enhanced photocatalytic H2-production activity of WO3/TiO2 step-scheme heterojunction by graphene modification. Chinese Journal of Catalysis, 2020, 41, 9-20.	14.0	458
62	ZIF-67 derived nickel cobalt sulfide hollow cages for high-performance supercapacitors. Applied Surface Science, 2020, 504, 144501.	6.1	107
63	Near-infrared absorbing 2D/3D ZnIn2S4/N-doped graphene photocatalyst for highly efficient CO2 capture and photocatalytic reduction. Science China Materials, 2020, 63, 552-565.	6.3	159
64	Hierarchical NiMn ₂ O ₄ /rGO composite nanosheets decorated with Pt for low-temperature formaldehyde oxidation. Environmental Science: Nano, 2020, 7, 198-209.	4.3	40
65	Cobalt polyoxometalate on N-doped carbon layer to boost photoelectrochemical water oxidation of BiVO4. Chemical Engineering Journal, 2020, 392, 123744.	12.7	57
66	Nanocages of Polymeric Carbon Nitride from Low‶emperature Supramolecular Preorganization for Photocatalytic CO ₂ Reduction. Solar Rrl, 2020, 4, 1900469.	5.8	38
67	Graphene-Zn0.5Cd0.5S nanocomposite with enhanced visible-light photocatalytic CO2 reduction activity. Applied Surface Science, 2020, 506, 144683.	6.1	48
68	Curved Surface Boosts Electrochemical CO ₂ Reduction to Formate via Bismuth Nanotubes in a Wide Potential Window. ACS Catalysis, 2020, 10, 358-364.	11.2	206
69	Holey Graphene for Electrochemical Energy Storage. Cell Reports Physical Science, 2020, 1, 100215.	5.6	58
70	Grapheneâ€Based Materials in Planar Perovskite Solar Cells. Solar Rrl, 2020, 4, 2000502.	5.8	36
71	Unique S-scheme heterojunctions in self-assembled TiO2/CsPbBr3 hybrids for CO2 photoreduction. Nature Communications, 2020, 11, 4613.	12.8	776
72	Room-temperature formaldehyde catalytic decomposition. Environmental Science: Nano, 2020, 7, 3655-3709.	4.3	64

#	Article	IF	CITATIONS
73	Enhanced Photocatalytic H ₂ â€Production Activity of CdS Quantum Dots Using Sn ²⁺ as Cocatalyst under Visible Light Irradiation. Small, 2020, 16, e2001024.	10.0	124
74	Topotactic Transformation of Bismuth Oxybromide into Bismuth Tungstate: Bandgap Modulation of Single-Crystalline {001}-Faceted Nanosheets for Enhanced Photocatalytic CO ₂ Reduction. ACS Applied Materials & Interfaces, 2020, 12, 26991-27000.	8.0	53
75	Photocatalytic CO ₂ reduction of C/ZnO nanofibers enhanced by an Ni-NiS cocatalyst. Nanoscale, 2020, 12, 7206-7213.	5.6	80
76	Lowâ€Temperatureâ€Processed Zr/F Coâ€Doped SnO ₂ Electron Transport Layer for Highâ€Efficiency Planar Perovskite Solar Cells. Solar Rrl, 2020, 4, 2000090.	5.8	42
77	S-Scheme Heterojunction Photocatalyst. CheM, 2020, 6, 1543-1559.	11.7	1,993
78	Graphdiyne: A Brilliant Hole Accumulator for Stable and Efficient Planar Perovskite Solar Cells. Small, 2020, 16, e1907290.	10.0	45
79	3D Grapheneâ€Based H ₂ â€Production Photocatalyst and Electrocatalyst. Advanced Energy Materials, 2020, 10, 1903802.	19.5	199
80	Construction of nickel cobalt sulfide nanosheet arrays on carbon cloth for performance-enhanced supercapacitor. Journal of Materials Science and Technology, 2020, 47, 113-121.	10.7	160
81	NiFe-LDH nanosheet/carbon fiber nanocomposite with enhanced anionic dye adsorption performance. Applied Surface Science, 2020, 511, 145570.	6.1	112
82	Principle and surface science of photocatalysis. Interface Science and Technology, 2020, 31, 1-38.	3.3	24
83	Hierarchical porous photocatalysts. Interface Science and Technology, 2020, , 63-102.	3.3	4
84	2D/2D/0D TiO2/C3N4/Ti3C2 MXene composite S-scheme photocatalyst with enhanced CO2 reduction activity. Applied Catalysis B: Environmental, 2020, 272, 119006.	20.2	604
85	Recent advances in g-C3N4-based heterojunction photocatalysts. Journal of Materials Science and Technology, 2020, 56, 1-17.	10.7	297
86	Surface modification of g-C3N4: first-principles study. Interface Science and Technology, 2020, 31, 509-539.	3.3	2
87	Triethanolamine-mediated photodeposition formation of amorphous Ni-P alloy for improved H2-evolution activity of g-C3N4. Science China Materials, 2020, 63, 2215-2227.	6.3	53
88	Design and fabrication of direct Z-scheme photocatalysts. Interface Science and Technology, 2020, 31, 193-229.	3.3	12
89	Plasmon-induced interfacial charge-transfer transition prompts enhanced CO2 photoreduction over Cu/Cu2O octahedrons. Chemical Engineering Journal, 2020, 397, 125390.	12.7	65
90	Efficient transformative HCHO capture by defective NH ₂ -UiO-66(Zr) at room temperature. Environmental Science: Nano, 2019, 6, 2931-2936.	4.3	38

#	Article	IF	CITATIONS
91	Graphdiyne: A New Photocatalytic CO ₂ Reduction Cocatalyst. Advanced Functional Materials, 2019, 29, 1904256.	14.9	207
92	The pulsed laser-induced Schottky junction via in-situ forming Cd clusters on CdS surfaces toward efficient visible light-driven photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2019, 258, 117967.	20.2	148
93	NH4Cl-induced low-temperature formation of nitrogen-rich g-C3N4 nanosheets with improved photocatalytic hydrogen evolution. Carbon, 2019, 153, 757-766.	10.3	132
94	Novel g-C3N4/g-C3N4 S-scheme isotype heterojunction for improved photocatalytic hydrogen generation. Applied Surface Science, 2019, 495, 143555.	6.1	166
95	Unraveling Photoexcited Charge Transfer Pathway and Process of CdS/Graphene Nanoribbon Composites toward Visibleâ€Light Photocatalytic Hydrogen Evolution. Small, 2019, 15, e1902459.	10.0	258
96	Highly Selective CO2 Capture and Its Direct Photochemical Conversion on Ordered 2D/1D Heterojunctions. Joule, 2019, 3, 2792-2805.	24.0	189
97	Thioether-Functionalized 2D Covalent Organic Framework Featuring Specific Affinity to Au for Photocatalytic Hydrogen Production from Seawater. ACS Sustainable Chemistry and Engineering, 2019, 7, 18574-18581.	6.7	91
98	S‣cheme Heterojunction TiO ₂ /CdS Nanocomposite Nanofiber as H ₂ â€Production Photocatalyst. ChemCatChem, 2019, 11, 6301-6309.	3.7	286
99	Review on DFT calculation of <i>s</i> â€ŧriazineâ€based carbon nitride. , 2019, 1, 32-56.		193
100	In Situ Grown Monolayer Nâ€Đoped Graphene on CdS Hollow Spheres with Seamless Contact for Photocatalytic CO ₂ Reduction. Advanced Materials, 2019, 31, e1902868.	21.0	515
101	Hierarchical honeycomb-like Pt/NiFe-LDH/rGO nanocomposite with excellent formaldehyde decomposition activity. Chemical Engineering Journal, 2019, 365, 378-388.	12.7	151
102	Hierarchical porous Ni/Co-LDH hollow dodecahedron with excellent adsorption property for Congo red and Cr(VI) ions. Applied Surface Science, 2019, 478, 981-990.	6.1	204
103	Photocatalytic H2 evolution on graphdiyne/g-C3N4 hybrid nanocomposites. Applied Catalysis B: Environmental, 2019, 255, 117770.	20.2	284
104	Rationally designed hierarchical NiCo2O4–C@Ni(OH)2 core-shell nanofibers for high performance supercapacitors. Carbon, 2019, 152, 652-660.	10.3	83
105	Ethyl acetate-induced formation of amorphous MoSx nanoclusters for improved H2-evolution activity of TiO2 photocatalyst. Chemical Engineering Journal, 2019, 375, 121934.	12.7	81
106	Dual Cocatalysts in TiO ₂ Photocatalysis. Advanced Materials, 2019, 31, e1807660.	21.0	796
107	0D/2D NiS2/V-MXene composite for electrocatalytic H2 evolution. Journal of Catalysis, 2019, 375, 8-20.	6.2	150
108	Localized π-conjugated structure and EPR investigation of g-C3N4 photocatalyst. Applied Surface Science, 2019, 487, 335-342.	6.1	119

#	Article	IF	CITATIONS
109	Enhanced efficiency of perovskite solar cells by PbS quantum dot modification. Applied Surface Science, 2019, 487, 32-40.	6.1	37
110	NiCo ₂ S ₄ Nanotubes Anchored 3D Nitrogen-Doped Graphene Framework as Electrode Material with Enhanced Performance for Asymmetric Supercapacitors. ACS Sustainable Chemistry and Engineering, 2019, 7, 11157-11165.	6.7	73
111	0D/2D (Fe0.5Ni0.5)S2/rGO nanocomposite with enhanced supercapacitor and lithium ion battery performance. Journal of Power Sources, 2019, 426, 266-274.	7.8	54
112	0D/3D MoS2-NiS2/N-doped graphene foam composite for efficient overall water splitting. Applied Catalysis B: Environmental, 2019, 254, 15-25.	20.2	243
113	High-yield lactic acid-mediated route for a g-C ₃ N ₄ nanosheet photocatalyst with enhanced H ₂ -evolution performance. Nanoscale, 2019, 11, 9608-9616.	5.6	107
114	Intrinsic intermediate gap states of TiO2 materials and their roles in charge carrier kinetics. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2019, 39, 1-57.	11.6	70
115	Ultrafine iron-cobalt nanoparticles embedded in nitrogen-doped porous carbon matrix for oxygen reduction reaction and zinc-air batteries. Journal of Colloid and Interface Science, 2019, 546, 113-121.	9.4	40
116	Hollow Carbon Spheres and Their Hybrid Nanomaterials in Electrochemical Energy Storage. Advanced Energy Materials, 2019, 9, 1803900.	19.5	220
117	N-doped graphene framework supported nickel cobalt oxide as supercapacitor electrode with enhanced performance. Applied Surface Science, 2019, 484, 135-143.	6.1	43
118	3D hierarchical graphene oxide-NiFe LDH composite with enhanced adsorption affinity to Congo red, methyl orange and Cr(VI) ions. Journal of Hazardous Materials, 2019, 369, 214-225.	12.4	329
119	Cocatalysts for Selective Photoreduction of CO ₂ into Solar Fuels. Chemical Reviews, 2019, 119, 3962-4179.	47.7	1,591
120	Quenching induced hierarchical 3D porous g-C ₃ N ₄ with enhanced photocatalytic CO ₂ reduction activity. Chemical Communications, 2019, 55, 14023-14026.	4.1	83
121	Enhanced Photocatalytic Activity and Selectivity for CO ₂ Reduction over a TiO ₂ Nanofibre Mat Using Ag and MgO as Biâ€Cocatalyst. ChemCatChem, 2019, 11, 465-472.	3.7	81
122	Nickel-based materials for supercapacitors. Materials Today, 2019, 25, 35-65.	14.2	247
123	Plasmonic Graphene-Like Au/C ₃ N ₄ Nanosheets with Barrier-Free Interface for Photocatalytically Sustainable Evolution of Active Oxygen Species. ACS Sustainable Chemistry and Engineering, 2019, 7, 2018-2026.	6.7	34
124	Hierarchical porous Al2O3@ZnO core-shell microfibres with excellent adsorption affinity for Congo red molecule. Applied Surface Science, 2019, 473, 251-260.	6.1	61
125	Hierarchical C/NiO-ZnO nanocomposite fibers with enhanced adsorption capacity for Congo red. Journal of Colloid and Interface Science, 2019, 537, 736-745.	9.4	123
126	Binary Solvent Engineering for High-Performance Two-Dimensional Perovskite Solar Cells. ACS Sustainable Chemistry and Engineering, 2019, 7, 3487-3495.	6.7	90

#	Article	IF	CITATIONS
127	Review on Metal Sulphideâ€based Zâ€scheme Photocatalysts. ChemCatChem, 2019, 11, 1394-1411.	3.7	439
128	In Situ Irradiated Xâ€Ray Photoelectron Spectroscopy Investigation on a Direct Zâ€Scheme TiO ₂ /CdS Composite Film Photocatalyst. Advanced Materials, 2019, 31, e1802981.	21.0	714
129	Hierarchically CdS–Ag2S nanocomposites for efficient photocatalytic H2 production. Applied Surface Science, 2019, 470, 196-204.	6.1	189
130	Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2-production photocatalyst. Applied Catalysis B: Environmental, 2019, 243, 556-565.	20.2	1,895
131	Adsorption of CO2, O2, NO and CO on s-triazine-based g-C3N4 surface. Catalysis Today, 2019, 335, 117-127.	4.4	59
132	Direct Z-scheme ZnO/CdS hierarchical photocatalyst for enhanced photocatalytic H2-production activity. Applied Catalysis B: Environmental, 2019, 243, 19-26.	20.2	653
133	TiO ₂ –MnO _{<i>x</i>} –Pt Hybrid Multiheterojunction Film Photocatalyst with Enhanced Photocatalytic CO ₂ -Reduction Activity. ACS Applied Materials & Interfaces, 2019, 11, 5581-5589.	8.0	219
134	CulnS2 sensitized TiO2 hybrid nanofibers for improved photocatalytic CO2 reduction. Applied Catalysis B: Environmental, 2018, 230, 194-202.	20.2	407
135	Ultrathin Bi2WO6 nanosheet decorated with Pt nanoparticles for efficient formaldehyde removal at room temperature. Applied Surface Science, 2018, 441, 429-437.	6.1	84
136	Three-dimensional hollow graphene efficiently promotes electron transfer of Ag3PO4 for photocatalytically eliminating phenol. Applied Surface Science, 2018, 442, 224-231.	6.1	27
137	2D/2D Heterojunction of Ultrathin MXene/Bi ₂ WO ₆ Nanosheets for Improved Photocatalytic CO ₂ Reduction. Advanced Functional Materials, 2018, 28, 1800136.	14.9	1,157
138	Fabrication of hierarchical bristle-grass-like NH4Al(OH)2CO3@Ni(OH)2 core-shell structure and its enhanced Congo red adsorption performance. Journal of Alloys and Compounds, 2018, 750, 644-654.	5.5	37
139	Self-assembled hierarchical direct Z-scheme g-C3N4/ZnO microspheres with enhanced photocatalytic CO2 reduction performance. Applied Surface Science, 2018, 441, 12-22.	6.1	364
140	Hierarchical TiO ₂ /Ni(OH) ₂ composite fibers with enhanced photocatalytic CO ₂ reduction performance. Journal of Materials Chemistry A, 2018, 6, 4729-4736.	10.3	212
141	Core–Shell Nitrogenâ€Doped Carbon Hollow Spheres/Co ₃ O ₄ Nanosheets as Advanced Electrode for Highâ€Performance Supercapacitor. Small, 2018, 14, e1702407.	10.0	309
142	Constructing 2D/2D Fe ₂ O ₃ /gâ€C ₃ N ₄ Direct Zâ€5cheme Photocatalysts with Enhanced H ₂ Generation Performance. Solar Rrl, 2018, 2, 1800006.	5.8	403
143	Ni <i>_x</i> S <i>_y</i> Nanowalls/Nitrogenâ€Doped Graphene Foam Is an Efficient Trifunctional Catalyst for Unassisted Artificial Photosynthesis. Advanced Functional Materials, 2018, 28, 1706917.	14.9	72
144	Chestnut husk-like nickel cobaltite hollow microspheres for the adsorption of Congo red. Journal of Alloys and Compounds, 2018, 735, 1041-1051.	5.5	66

#	Article	IF	CITATIONS
145	Hollow CoS _{<i>x</i>} Polyhedrons Act as High-Efficiency Cocatalyst for Enhancing the Photocatalytic Hydrogen Generation of g-C ₃ N ₄ . ACS Sustainable Chemistry and Engineering, 2018, 6, 2767-2779.	6.7	343
146	ZnO hierarchical microsphere for enhanced photocatalytic activity. Journal of Alloys and Compounds, 2018, 741, 622-632.	5.5	145
147	Ag2CrO4/g-C3N4/graphene oxide ternary nanocomposite Z-scheme photocatalyst with enhanced CO2 reduction activity. Applied Catalysis B: Environmental, 2018, 231, 368-380.	20.2	469
148	Suspensible Cubic-Phase CdS Nanocrystal Photocatalyst: Facile Synthesis and Highly Efficient H ₂ -Evolution Performance in a Sulfur-Rich System. ACS Sustainable Chemistry and Engineering, 2018, 6, 5513-5523.	6.7	110
149	TiO2/MXene Ti3C2 composite with excellent photocatalytic CO2 reduction activity. Journal of Catalysis, 2018, 361, 255-266.	6.2	647
150	Dependence of Exposed Facet of Pd on Photocatalytic H ₂ -Production Activity. ACS Sustainable Chemistry and Engineering, 2018, 6, 6478-6487.	6.7	41
151	Graphdiyne: a superior carbon additive to boost the activity of water oxidation catalysts. Nanoscale Horizons, 2018, 3, 317-326.	8.0	116
152	Fabrication of a hierarchical NiO/C hollow sphere composite and its enhanced supercapacitor performance. Chemical Communications, 2018, 54, 3731-3734.	4.1	140
153	Investigation of Al 2 O 3 and ZrO 2 spacer layers for fully printable and hole-conductor-free mesoscopic perovskite solar cells. Applied Surface Science, 2018, 430, 632-638.	6.1	52
154	Enhanced photocurrent density of HTM-free perovskite solar cells by carbon quantum dots. Applied Surface Science, 2018, 430, 625-631.	6.1	68
155	New understanding of photocatalytic properties of zigzag and armchair g-C 3 N 4 nanotubes from electronic structures and carrier effective mass. Applied Surface Science, 2018, 430, 348-354.	6.1	40
156	Hole-conductor-free perovskite solar cells prepared with carbon counter electrode. Applied Surface Science, 2018, 430, 531-538.	6.1	39
157	In situ photodeposition of amorphous CoS x on the TiO 2 towards hydrogen evolution. Applied Surface Science, 2018, 430, 448-456.	6.1	70
158	Mechanistic insight into the enhanced photocatalytic activity of single-atom Pt, Pd or Au-embedded g-C 3 N 4. Applied Surface Science, 2018, 433, 1175-1183.	6.1	188
159	Direct evidence and enhancement of surface plasmon resonance effect on Ag-loaded TiO2 nanotube arrays for photocatalytic CO2 reduction. Applied Surface Science, 2018, 434, 423-432.	6.1	199
160	A flexible bio-inspired H2-production photocatalyst. Applied Catalysis B: Environmental, 2018, 220, 148-160.	20.2	146
161	g ₃ N ₄ â€Based Heterostructured Photocatalysts. Advanced Energy Materials, 2018, 8, 1701503.	19.5	1,870
162	Fabrication of hierarchical porous ZnO/NiO hollow microspheres for adsorptive removal of Congo red. Applied Surface Science, 2018, 435, 1002-1010.	6.1	67

#	Article	IF	CITATIONS
163	Adsorptive removal of an anionic dye Congo red by flower-like hierarchical magnesium oxide (MgO)-graphene oxide composite microspheres. Applied Surface Science, 2018, 435, 1136-1142.	6.1	151
164	Noble metal-free RGO/TiO2 composite nanofiber with enhanced photocatalytic H2-production performance. Applied Surface Science, 2018, 434, 620-625.	6.1	87
165	2D/2D g-C ₃ N ₄ /MnO ₂ Nanocomposite as a Direct Z-Scheme Photocatalyst for Enhanced Photocatalytic Activity. ACS Sustainable Chemistry and Engineering, 2018, 6, 965-973.	6.7	519
166	Mesoporous TiO ₂ Comprising Small, Highly Crystalline Nanoparticles for Efficient CO ₂ Reduction by H ₂ O. ACS Sustainable Chemistry and Engineering, 2018, 6, 531-540.	6.7	52
167	First-principle calculation study of tri-s-triazine-based g-C3N4: A review. Applied Catalysis B: Environmental, 2018, 224, 983-999.	20.2	382
168	Direct Observation of Structural Evolution of Metal Chalcogenide in Electrocatalytic Water Oxidation. ACS Nano, 2018, 12, 12369-12379.	14.6	366
169	Review on design and evaluation of environmental photocatalysts. Frontiers of Environmental Science and Engineering, 2018, 12, 1.	6.0	170
170	TiO ₂ Photonic Crystals with Localized Surface Photothermal Effect and Enhanced Photocatalytic CO ₂ Reduction Activity. ACS Sustainable Chemistry and Engineering, 2018, 6, 15653-15661.	6.7	94
171	1D/2D TiO ₂ /MoS ₂ Hybrid Nanostructures for Enhanced Photocatalytic CO ₂ Reduction. Advanced Optical Materials, 2018, 6, 1800911.	7.3	190
172	Dopamine Modified g-C ₃ N ₄ and Its Enhanced Visible-Light Photocatalytic H ₂ -Production Activity. ACS Sustainable Chemistry and Engineering, 2018, 6, 8945-8953.	6.7	198
173	Direct Z-scheme photocatalysts: Principles, synthesis, and applications. Materials Today, 2018, 21, 1042-1063.	14.2	1,134
174	Hierarchically nanostructured porous TiO2(B) with superior photocatalytic CO2 reduction activity. Science China Chemistry, 2018, 61, 344-350.	8.2	83
175	Enhanced Photocatalytic H ₂ -Production Activity of g-C ₃ N ₄ Nanosheets via Optimal Photodeposition of Pt as Cocatalyst. ACS Sustainable Chemistry and Engineering, 2018, 6, 10472-10480.	6.7	166
176	Direct Z-scheme porous g-C3N4/BiOI heterojunction for enhanced visible-light photocatalytic activity. Journal of Alloys and Compounds, 2018, 766, 841-850.	5.5	115
177	Direct Photoinduced Synthesis of Amorphous CoMoS _{<i>x</i>} Cocatalyst and Its Improved Photocatalytic H ₂ -Evolution Activity of CdS. ACS Sustainable Chemistry and Engineering, 2018, 6, 12436-12445.	6.7	86
178	Direct Z-scheme PDA-modified ZnO hierarchical microspheres with enhanced photocatalytic CO2 reduction performance. Applied Surface Science, 2018, 457, 1096-1102.	6.1	67
179	Direct Z-Scheme TiO ₂ /NiS Core–Shell Hybrid Nanofibers with Enhanced Photocatalytic H ₂ -Production Activity. ACS Sustainable Chemistry and Engineering, 2018, 6, 12291-12298.	6.7	216
180	Review on nanoscale Bi-based photocatalysts. Nanoscale Horizons, 2018, 3, 464-504.	8.0	421

#	Article	IF	CITATIONS
181	Ultrathin CdS nanosheets with tunable thickness and efficient photocatalytic hydrogen generation. Applied Surface Science, 2018, 462, 606-614.	6.1	112
182	Hierarchical Pt/MnO ₂ –Ni(OH) ₂ Hybrid Nanoflakes with Enhanced Room-Temperature Formaldehyde Oxidation Activity. ACS Sustainable Chemistry and Engineering, 2018, 6, 12481-12488.	6.7	70
183	Photocatalysis: Single-Atom Engineering of Directional Charge Transfer Channels and Active Sites for Photocatalytic Hydrogen Evolution (Adv. Funct. Mater. 32/2018). Advanced Functional Materials, 2018, 28, 1870224.	14.9	6
184	First-principle investigation on charge carrier transfer in transition-metal single atoms loaded g-C3N4. Applied Surface Science, 2018, 459, 385-392.	6.1	43
185	Enhanced Performance of Planar Perovskite Solar Cell by Graphene Quantum Dot Modification. ACS Sustainable Chemistry and Engineering, 2018, 6, 8631-8640.	6.7	76
186	Metal–Organic Framework-Derived Nickel–Cobalt Sulfide on Ultrathin Mxene Nanosheets for Electrocatalytic Oxygen Evolution. ACS Applied Materials & Interfaces, 2018, 10, 22311-22319.	8.0	306
187	Singleâ€Atom Engineering of Directional Charge Transfer Channels and Active Sites for Photocatalytic Hydrogen Evolution. Advanced Functional Materials, 2018, 28, 1802169.	14.9	287
188	Hierarchical Porous Oâ€Doped gâ€C ₃ N ₄ with Enhanced Photocatalytic CO ₂ Reduction Activity. Small, 2017, 13, 1603938.	10.0	1,025
189	Co 3 O 4 nanorod-supported Pt with enhanced performance for catalytic HCHO oxidation at room temperature. Applied Surface Science, 2017, 404, 426-434.	6.1	110
190	Heterojunction Photocatalysts. Advanced Materials, 2017, 29, 1601694.	21.0	3,143
191	Catalytic decomposition and mechanism of formaldehyde over Pt–Al ₂ O ₃ molecular sieves at room temperature. Physical Chemistry Chemical Physics, 2017, 19, 6957-6963.	2.8	66
192	Formaldehyde and volatile organic compound (VOC) emissions from particleboard: Identification of odorous compounds and effects of heat treatment. Building and Environment, 2017, 117, 118-126.	6.9	169
193	First principle investigation of halogen-doped monolayer g-C3N4 photocatalyst. Applied Catalysis B: Environmental, 2017, 207, 27-34.	20.2	422
194	Hybrid carbon@TiO ₂ hollow spheres with enhanced photocatalytic CO ₂ reduction activity. Journal of Materials Chemistry A, 2017, 5, 5020-5029.	10.3	240
195	Hollow Iron–Vanadium Composite Spheres: A Highly Efficient Ironâ€Based Water Oxidation Electrocatalyst without the Need for Nickel or Cobalt. Angewandte Chemie - International Edition, 2017, 56, 3289-3293.	13.8	216
196	Hierarchical hollow cages of Mn-Co layered double hydroxide as supercapacitor electrode materials. Applied Surface Science, 2017, 413, 35-40.	6.1	98
197	A Review of Direct Zâ€Scheme Photocatalysts. Small Methods, 2017, 1, 1700080.	8.6	955
198	Construction of Z-scheme Ag2CO3/N-doped graphene photocatalysts with enhanced visible-light photocatalytic activity by tuning the nitrogen species. Applied Surface Science, 2017, 396, 1368-1374.	6.1	73

#	Article	lF	CITATIONS
199	Direct Z-scheme TiO2/CdS hierarchical photocatalyst for enhanced photocatalytic H2-production activity. Applied Surface Science, 2017, 422, 518-527.	6.1	397
200	Effect of microstructure and surface hydroxyls on the catalytic activity of Au/AlOOH for formaldehyde removal at room temperature. Journal of Colloid and Interface Science, 2017, 501, 164-174.	9.4	76
201	Ag-Modified BiOCl Single-Crystal Nanosheets: Dependence of Photocatalytic Performance on the Region-Selective Deposition of Ag Nanoparticles. Journal of Physical Chemistry C, 2017, 121, 13191-13201.	3.1	106
202	Enhanced visible-light photocatalytic H ₂ -generation activity of carbon/g-C ₃ N ₄ nanocomposites prepared by two-step thermal treatment. Dalton Transactions, 2017, 46, 10611-10619.	3.3	128
203	Trace-level phosphorus and sodium co-doping of g-C 3 N 4 for enhanced photocatalytic H 2 production. Journal of Power Sources, 2017, 351, 151-159.	7.8	205
204	Facet effect of Pd cocatalyst on photocatalytic CO 2 reduction over g-C 3 N 4. Journal of Catalysis, 2017, 349, 208-217.	6.2	332
205	Effects of hierarchical structure on the performance of tin oxide-supported platinum catalyst for room-temperature formaldehyde oxidation. Chinese Journal of Catalysis, 2017, 38, 199-206.	14.0	57
206	Making co-condensed amorphous carbon/g-C3N4 composites with improved visible-light photocatalytic H2-production performance using Pt as cocatalyst. Carbon, 2017, 118, 241-249.	10.3	356
207	Hierarchical porous C/MnO ₂ composite hollow microspheres with enhanced supercapacitor performance. Journal of Materials Chemistry A, 2017, 5, 8635-8643.	10.3	174
208	From Millimeter to Subnanometer: Vapor–Solid Deposition of Carbon Nitride Hierarchical Nanostructures Directed by Supramolecular Assembly. Angewandte Chemie - International Edition, 2017, 56, 8426-8430.	13.8	90
209	Few-Layered Graphene-like Boron Nitride: A Highly Efficient Adsorbent for Indoor Formaldehyde Removal. Environmental Science and Technology Letters, 2017, 4, 20-25.	8.7	136
210	Hierarchical TiO ₂ Submicrorods Improve the Photovoltaic Performance of Dye-Sensitized Solar Cells. ACS Sustainable Chemistry and Engineering, 2017, 5, 1315-1321.	6.7	48
211	First-principles investigation of Cu-doped ZnS with enhanced photocatalytic hydrogen production activity. Chemical Physics Letters, 2017, 668, 1-6.	2.6	71
212	Cu2(OH)2CO3 clusters: Novel noble-metal-free cocatalysts for efficient photocatalytic hydrogen production from water splitting. Applied Catalysis B: Environmental, 2017, 205, 104-111.	20.2	137
213	Improving photoanodes to obtain highly efficient dye-sensitized solar cells: a brief review. Materials Horizons, 2017, 4, 319-344.	12.2	152
214	Adsorption investigation of CO2 on g-C3N4 surface by DFT calculation. Journal of CO2 Utilization, 2017, 21, 327-335.	6.8	134
215	Hierarchical NiS/N-doped carbon composite hollow spheres with excellent supercapacitor performance. Journal of Materials Chemistry A, 2017, 5, 21257-21265.	10.3	174
216	Flexible nickel foam decorated with Pt/NiO nanoflakes with oxygen vacancies for enhanced catalytic formaldehyde oxidation at room temperature. Environmental Science: Nano, 2017, 4, 2215-2224.	4.3	87

#	Article	IF	CITATIONS
217	Fabrication of hierarchical porous ZnO-Al 2 O 3 microspheres with enhanced adsorption performance. Applied Surface Science, 2017, 426, 360-368.	6.1	89
218	Effect of calcination temperature on formaldehyde oxidation performance of Pt/TiO 2 nanofiber composite at room temperature. Applied Surface Science, 2017, 426, 333-341.	6.1	80
219	In Situ Fabrication of Ni–Mo Bimetal Sulfide Hybrid as an Efficient Electrocatalyst for Hydrogen Evolution over a Wide pH Range. ACS Catalysis, 2017, 7, 6179-6187.	11.2	287
220	Review on the improvement of the photocatalytic and antibacterial activities of ZnO. Journal of Alloys and Compounds, 2017, 727, 792-820.	5.5	884
221	A direct Z-scheme g-C3N4/SnS2 photocatalyst with superior visible-light CO2 reduction performance. Journal of Catalysis, 2017, 352, 532-541.	6.2	721
222	Hierarchical flower-like nickel(II) oxide microspheres with high adsorption capacity of Congo red in water. Journal of Colloid and Interface Science, 2017, 504, 688-696.	9.4	167
223	Hierarchical flower-like C/NiO composite hollow microspheres and its excellent supercapacitor performance. Journal of Power Sources, 2017, 359, 371-378.	7.8	154
224	Enhanced charge transfer kinetics of Fe2O3/CdS composite nanorod arrays using cobalt-phosphate as cocatalyst. Applied Catalysis B: Environmental, 2017, 218, 570-580.	20.2	171
225	Ultra-thin nanosheet assemblies of graphitic carbon nitride for enhanced photocatalytic CO ₂ reduction. Journal of Materials Chemistry A, 2017, 5, 3230-3238.	10.3	621
226	Nanosheet-based printable perovskite solar cells. Solar Energy Materials and Solar Cells, 2017, 159, 518-525.	6.2	45
227	The effect of manganese vacancy in birnessite-type MnO2 on room-temperature oxidation of formaldehyde in air. Applied Catalysis B: Environmental, 2017, 204, 147-155.	20.2	362
228	Fabrication and photocatalytic activity enhanced mechanism of direct Z-scheme g-C 3 N 4 /Ag 2 WO 4 photocatalyst. Applied Surface Science, 2017, 391, 175-183.	6.1	601
229	Enhanced room-temperature HCHO decomposition activity of highly-dispersed Pt/Al2O3 hierarchical microspheres with exposed {110} facets. Journal of Industrial and Engineering Chemistry, 2017, 45, 197-205.	5.8	63
230	Superb adsorption capacity of hierarchical calcined Ni/Mg/Al layered double hydroxides for Congo red and Cr(VI) ions. Journal of Hazardous Materials, 2017, 321, 801-811.	12.4	417
231	Synthesis of hierarchical porous zinc oxide (ZnO) microspheres with highly efficient adsorption of Congo red. Journal of Colloid and Interface Science, 2017, 490, 242-251.	9.4	266
232	Surface modification and enhanced photocatalytic CO2 reduction performance of TiO2: a review. Applied Surface Science, 2017, 392, 658-686.	6.1	989
233	A review on TiO2-based Z-scheme photocatalysts. Chinese Journal of Catalysis, 2017, 38, 1936-1955.	14.0	511
234	Amorphous Ti(<scp>iv</scp>)-modified Bi ₂ WO ₆ with enhanced photocatalytic performance. RSC Advances, 2016, 6, 65902-65910.	3.6	22

#	Article	IF	CITATIONS
235	Enhanced formaldehyde oxidation on CeO 2 /AlOOH-supported Pt catalyst at room temperature. Applied Catalysis B: Environmental, 2016, 199, 458-465.	20.2	142
236	One-pot template-free synthesis of porous CdMoO4 microspheres and their enhanced photocatalytic activity. Applied Surface Science, 2016, 387, 202-213.	6.1	39
237	Flexible Mg–Al layered double hydroxide supported Pt on Al foil for use in room-temperature catalytic decomposition of formaldehyde. RSC Advances, 2016, 6, 34280-34287.	3.6	43
238	Enhanced photocatalytic H 2 -production activity of anatase TiO 2 nanosheet by selectively depositing dual-cocatalysts on {101} and {001} facets. Applied Catalysis B: Environmental, 2016, 198, 286-294.	20.2	375
239	Effect of calcination on adsorption performance of Mg–Al layered double hydroxide prepared by a water-in-oil microemulsion method. RSC Advances, 2016, 6, 50128-50137.	3.6	62
240	Carbon-based H2-production photocatalytic materials. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2016, 27, 72-99.	11.6	252
241	Enhanced photocatalytic H2 production on CdS nanorod using cobalt-phosphate as oxidation cocatalyst. Applied Surface Science, 2016, 389, 775-782.	6.1	212
242	Electrochemically reduced graphene oxide on silicon nanowire arrays for enhanced photoelectrochemical hydrogen evolution. Dalton Transactions, 2016, 45, 13717-13725.	3.3	37
243	Phenylamine-Functionalized rGO/TiO ₂ Photocatalysts: Spatially Separated Adsorption Sites and Tunable Photocatalytic Selectivity. ACS Applied Materials & Interfaces, 2016, 8, 29470-29477.	8.0	122
244	Fabrication and enhanced CO2 reduction performance of N-self-doped TiO2 microsheet photocatalyst by bi-cocatalyst modification. Journal of CO2 Utilization, 2016, 16, 442-449.	6.8	99
245	A new understanding of the photocatalytic mechanism of the direct Z-scheme g-C ₃ N ₄ /TiO ₂ heterostructure. Physical Chemistry Chemical Physics, 2016, 18, 31175-31183.	2.8	459
246	Graphene in Photocatalysis: A Review. Small, 2016, 12, 6640-6696.	10.0	836
247	Room-temperature synthesis of BiOI with tailorable (0 0 1) facets and enhanced photocatalytic activity. Journal of Colloid and Interface Science, 2016, 478, 201-208.	9.4	74
248	Size- and shape-dependent catalytic performances of oxidation and reduction reactions on nanocatalysts. Chemical Society Reviews, 2016, 45, 4747-4765.	38.1	568
249	Shape-dependent photocatalytic hydrogen evolution activity over a Pt nanoparticle coupled g-C ₃ N ₄ photocatalyst. Physical Chemistry Chemical Physics, 2016, 18, 19457-19463.	2.8	190
250	Efficient removal of gaseous formaldehyde in air using hierarchical titanate nanospheres with in situ amine functionalization. Physical Chemistry Chemical Physics, 2016, 18, 18161-18168.	2.8	30
251	Hierarchically porous NiO–Al ₂ O ₃ nanocomposite with enhanced Congo red adsorption in water. RSC Advances, 2016, 6, 10272-10279.	3.6	72
252	Room-temperature catalytic oxidation of formaldehyde on catalysts. Catalysis Science and Technology, 2016, 6, 3649-3669.	4.1	197

#	Article	IF	CITATIONS
253	New understanding on the different photocatalytic activity of wurtzite and zinc-blende CdS. Applied Catalysis B: Environmental, 2016, 192, 101-107.	20.2	212
254	Enhanced Photoinduced-Stability and Photocatalytic Activity of CdS by Dual Amorphous Cocatalysts: Synergistic Effect of Ti(IV)-Hole Cocatalyst and Ni(II)-Electron Cocatalyst. Journal of Physical Chemistry C, 2016, 120, 3722-3730.	3.1	195
255	Halogen poisoning effect of Pt-TiO2 for formaldehyde catalytic oxidation performance at room temperature. Applied Surface Science, 2016, 364, 808-814.	6.1	124
256	Hierarchical photocatalysts. Chemical Society Reviews, 2016, 45, 2603-2636.	38.1	1,517
257	New Co(OH) ₂ /CdS nanowires for efficient visible light photocatalytic hydrogen production. Journal of Materials Chemistry A, 2016, 4, 5282-5287.	10.3	114
258	Hierarchical NiO–SiO2 composite hollow microspheres with enhanced adsorption affinity towards Congo red in water. Journal of Colloid and Interface Science, 2016, 466, 238-246.	9.4	133
259	TiO2 nanosheets with exposed {001} facets for photocatalytic applications. Nano Research, 2016, 9, 3-27.	10.4	327
260	High-surface area mesoporous Pt/TiO 2 hollow chains for efficient formaldehyde decomposition at ambient temperature. Journal of Hazardous Materials, 2016, 301, 522-530.	12.4	162
261	Microwave-assisted solvothermal synthesis of Bi4O5I2 hierarchical architectures with high photocatalytic performance. Catalysis Today, 2016, 264, 221-228.	4.4	100
262	Structure effect of graphene on the photocatalytic performance of plasmonic Ag/Ag2CO3-rGO for photocatalytic elimination of pollutants. Applied Catalysis B: Environmental, 2016, 181, 71-78.	20.2	219
263	Hierarchical Pt/NiO Hollow Microspheres with Enhanced Catalytic Performance. ChemNanoMat, 2015, 1, 58-67.	2.8	78
264	A Hierarchical Z-Scheme CdS-WO ₃ Photocatalyst with Enhanced CO ₂ Reduction Activity. Small, 2015, 11, 5262-5271.	10.0	682
265	Supramolecular Chemistry in Molten Sulfur: Preorganization Effects Leading to Marked Enhancement of Carbon Nitride Photoelectrochemistry. Advanced Functional Materials, 2015, 25, 6265-6271.	14.9	89
266	Grapheneâ€Based Photocatalysts for Solarâ€Fuel Generation. Angewandte Chemie - International Edition, 2015, 54, 11350-11366.	13.8	692
267	Fabrication of CdMoO ₄ @CdS core–shell hollow superstructures as high performance visible-light driven photocatalysts. Physical Chemistry Chemical Physics, 2015, 17, 15339-15347.	2.8	47
268	Nitrogen-doped TiO2 microsheets with enhanced visible light photocatalytic activity for CO2 reduction. Chinese Journal of Catalysis, 2015, 36, 2127-2134.	14.0	197
269	Enhanced catalytic activity of hierarchically macro-/mesoporous Pt/TiO ₂ toward room-temperature decomposition of formaldehyde. Catalysis Science and Technology, 2015, 5, 2366-2377.	4.1	86
270	Synthesis and adsorption performance of Mg(OH)2 hexagonal nanosheet–graphene oxide composites. Applied Surface Science, 2015, 332, 121-129.	6.1	121

#	Article	IF	CITATIONS
271	Template-free synthesis of hierarchical $\hat{1}^3$ -Al ₂ O ₃ nanostructures and their adsorption affinity toward phenol and CO ₂ . RSC Advances, 2015, 5, 7066-7073.	3.6	31
272	Polymeric Photocatalysts Based on Graphitic Carbon Nitride. Advanced Materials, 2015, 27, 2150-2176.	21.0	3,046
273	CdS/Graphene Nanocomposite Photocatalysts. Advanced Energy Materials, 2015, 5, 1500010.	19.5	694
274	Sulfur-doped g-C3N4 with enhanced photocatalytic CO2-reduction performance. Applied Catalysis B: Environmental, 2015, 176-177, 44-52.	20.2	919
275	Highly Active Mesoporous Ferrihydrite Supported Pt Catalyst for Formaldehyde Removal at Room Temperature. Environmental Science & Technology, 2015, 49, 6637-6644.	10.0	171
276	Cubic anatase TiO ₂ nanocrystals with enhanced photocatalytic CO ₂ reduction activity. Chemical Communications, 2015, 51, 7950-7953.	4.1	209
277	Isoelectric point and adsorption activity of porous g-C3N4. Applied Surface Science, 2015, 344, 188-195.	6.1	753
278	Enhanced visible light photocatalytic H2-production of g-C3N4/WS2 composite heterostructures. Applied Surface Science, 2015, 358, 196-203.	6.1	327
279	Graphene-Based Photocatalysts for CO ₂ Reduction to Solar Fuel. Journal of Physical Chemistry Letters, 2015, 6, 4244-4251.	4.6	368
280	Photocatalytic activity of Ag ₂ MO ₄ (M = Cr, Mo, W) photocatalysts. Journal of Materials Chemistry A, 2015, 3, 20153-20166.	10.3	152
281	Efficient photocatalytic reduction of CO2 by amine-functionalized g-C3N4. Applied Surface Science, 2015, 358, 350-355.	6.1	229
282	Layered manganese oxides for formaldehyde-oxidation at room temperature: the effect of interlayer cations. RSC Advances, 2015, 5, 100434-100442.	3.6	92
283	Enhanced photocatalytic H2-production activity of bicomponent NiO/TiO2 composite nanofibers. Journal of Colloid and Interface Science, 2015, 449, 115-121.	9.4	136
284	3D BiOl–GO composite with enhanced photocatalytic performance for phenol degradation under visible-light. Ceramics International, 2015, 41, 3511-3517.	4.8	74
285	Semiconductor-based photocatalytic CO ₂ conversion. Materials Horizons, 2015, 2, 261-278.	12.2	380
286	Efficient catalytic removal of formaldehyde at room temperature using AlOOH nanoflakes with deposited Pt. Applied Catalysis B: Environmental, 2015, 163, 306-312.	20.2	199
287	Enhanced photocatalytic activity and stability of Z-scheme Ag2CrO4-GO composite photocatalysts for organic pollutant degradation. Applied Catalysis B: Environmental, 2015, 164, 380-388.	20.2	483
288	Design and fabrication of semiconductor photocatalyst for photocatalytic reduction of CO2 to solar fuel. Science China Materials, 2014, 57, 70-100.	6.3	446

#	Article	IF	CITATIONS
289	Enhanced Visibleâ€Light Photocatalytic H ₂ Production by Zn _{<i>x</i>} Cd _{1â″<i>x</i>} S Modified with Earthâ€Abundant Nickelâ€Based Cocatalysts. ChemSusChem, 2014, 7, 3426-3434.	6.8	164
290	Morphology-dependent photocatalytic H2-production activity of CdS. Applied Catalysis B: Environmental, 2014, 156-157, 184-191.	20.2	359
291	Microwave-assisted hydrothermal synthesis of graphene based Au–TiO ₂ photocatalysts for efficient visible-light hydrogen production. Journal of Materials Chemistry A, 2014, 2, 3847-3855.	10.3	314
292	Enhanced visible-light photocatalytic activity of plasmonic Ag and graphene co-modified Bi ₂ WO ₆ nanosheets. Physical Chemistry Chemical Physics, 2014, 16, 1111-1120.	2.8	256
293	Synthesis of amino-functionalized mesoporous alumina with enhanced affinity towards Cr(VI) and CO2. Chemical Engineering Journal, 2014, 239, 207-215.	12.7	123
294	Ternary NiS/Zn <i>_x</i> Cd _{1â€<i>x</i>} S/Reduced Graphene Oxide Nanocomposites for Enhanced Solar Photocatalytic H ₂ â€Production Activity. Advanced Energy Materials, 2014, 4, 1301925.	19.5	244
295	A noble metal-free reduced graphene oxide–CdS nanorod composite for the enhanced visible-light photocatalytic reduction of CO2 to solar fuel. Journal of Materials Chemistry A, 2014, 2, 3407.	10.3	499
296	Microemulsion-Assisted Synthesis of Mesoporous Aluminum Oxyhydroxide Nanoflakes for Efficient Removal of Gaseous Formaldehyde. ACS Applied Materials & Interfaces, 2014, 6, 2111-2117.	8.0	78
297	Photocatalytic reduction of CO2 into hydrocarbon solar fuels over g-C3N4–Pt nanocomposite photocatalysts. Physical Chemistry Chemical Physics, 2014, 16, 11492.	2.8	465
298	Recent advances in visible light Bi-based photocatalysts. Chinese Journal of Catalysis, 2014, 35, 989-1007.	14.0	481
299	Allâ€Solidâ€State Zâ€Scheme Photocatalytic Systems. Advanced Materials, 2014, 26, 4920-4935.	21.0	1,989
300	New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO ₂ . Physical Chemistry Chemical Physics, 2014, 16, 20382-20386.	2.8	990
301	Two-dimensional layered composite photocatalysts. Chemical Communications, 2014, 50, 10768.	4.1	551
302	Direct Z-scheme anatase/rutile bi-phase nanocomposite TiO 2 nanofiber photocatalyst with enhanced photocatalytic H 2 -production activity. International Journal of Hydrogen Energy, 2014, 39, 15394-15402.	7.1	213
303	Enhanced Photocatalytic CO ₂ -Reduction Activity of Anatase TiO ₂ by Coexposed {001} and {101} Facets. Journal of the American Chemical Society, 2014, 136, 8839-8842.	13.7	1,701
304	Efficient Removal of Formaldehyde by Nanosized Gold on Well-Defined CeO ₂ Nanorods at Room Temperature. Environmental Science & Technology, 2014, 48, 9702-9708.	10.0	194
305	Synthesis and photocatalytic activity of plasmonic Ag@AgCl composite immobilized on titanate nanowire films. Catalysis Today, 2014, 224, 193-199.	4.4	45
306	Fabrication of porous ZrO2 hollow sphere and its adsorption performance to Congo red in water. Ceramics International, 2014, 40, 10847-10856.	4.8	85

#	Article	IF	CITATIONS
307	Cr(VI) removal from aqueous solutions by hydrothermal synthetic layered double hydroxides: Adsorption performance, coexisting anions and regeneration studies. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 457, 33-40.	4.7	127
308	Effects of the preparation method on the structure and the visible-light photocatalytic activity of Ag ₂ CrO ₄ . Beilstein Journal of Nanotechnology, 2014, 5, 658-666.	2.8	76
309	Amine-functionalized monodispersed porous silica microspheres with enhanced CO2 adsorption performance and good cyclic stability. Journal of Colloid and Interface Science, 2013, 408, 173-180.	9.4	67
310	Enhanced photocatalytic performance of direct Z-scheme g-C3N4–TiO2 photocatalysts for the decomposition of formaldehyde in air. Physical Chemistry Chemical Physics, 2013, 15, 16883.	2.8	1,167
311	Microemulsion-assisted synthesis of hierarchical porous Ni(OH)2/SiO2 composites toward efficient removal of formaldehyde in air. Dalton Transactions, 2013, 42, 10190.	3.3	108
312	Hierarchically porous MnO2 microspheres with enhanced adsorption performance. Journal of Materials Chemistry A, 2013, 1, 11682.	10.3	192
313	Photocatalytic degradation of organic dyes with hierarchical Bi ₂ O ₂ CO ₃ microstructures under visible-light. CrystEngComm, 2013, 15, 231-240.	2.6	117
314	Single crystal CdS nanowires with high visible-light photocatalytic H2-production performance. Journal of Materials Chemistry A, 2013, 1, 10927.	10.3	193
315	Enhanced photocatalytic H ₂ -production activity of TiO ₂ using Ni(NO ₃) ₂ as an additive. Physical Chemistry Chemical Physics, 2013, 15, 12033-12039.	2.8	79
316	Graphene-Based Photocatalysts for Hydrogen Generation. Journal of Physical Chemistry Letters, 2013, 4, 753-759.	4.6	501
317	Bio-template-assisted synthesis of hierarchically hollow SiO2 microtubes and their enhanced formaldehyde adsorption performance. Applied Surface Science, 2013, 274, 110-116.	6.1	94
318	Noble metal-free Ni(OH)2–g-C3N4 composite photocatalyst with enhanced visible-light photocatalytic H2-production activity. Catalysis Science and Technology, 2013, 3, 1782.	4.1	411
319	Enhanced Performance of NaOH-Modified Pt/TiO ₂ toward Room Temperature Selective Oxidation of Formaldehyde. Environmental Science & Technology, 2013, 47, 2777-2783.	10.0	355
320	Fabrication of NiS modified CdS nanorod p–n junction photocatalysts with enhanced visible-light photocatalytic H2-production activity. Physical Chemistry Chemical Physics, 2013, 15, 12088.	2.8	323
321	Zn _{1–<i>x</i>} Cd _{<i>x</i>} S Solid Solutions with Controlled Bandgap and Enhanced Visible-Light Photocatalytic H ₂ -Production Activity. ACS Catalysis, 2013, 3, 882-889.	11.2	565
322	Hierarchical porous CdS nanosheet-assembled flowers with enhanced visible-light photocatalytic H2-production performance. Applied Catalysis B: Environmental, 2013, 138-139, 299-303.	20.2	249
323	Enhancement of Visible-Light Photocatalytic Activity of Mesoporous Au-TiO ₂ Nanocomposites by Surface Plasmon Resonance. International Journal of Photoenergy, 2012, 2012, 1-10.	2.5	28
324	Facile Synthesis and Photocatalytic Property of Titania/Carbon Composite Hollow Microspheres with Bimodal Mesoporous Shells. International Journal of Photoenergy, 2012, 2012, 1-9.	2.5	4

#	Article	lF	CITATIONS
325	One-Pot Template-Free Hydrothermal Synthesis of Monoclinic Hollow Microspheres and Their Enhanced Visible-Light Photocatalytic Activity. International Journal of Photoenergy, 2012, 2012, 1-10.	2.5	17
326	Fluorine ions-mediated morphology control of anatase TiO2 with enhanced photocatalytic activity. Physical Chemistry Chemical Physics, 2012, 14, 5349.	2.8	203
327	Glycine-assisted hydrothermal synthesis and adsorption properties of crosslinked porous α-Fe2O3 nanomaterials for p-nitrophenol. Chemical Engineering Journal, 2012, 211-212, 153-160.	12.7	42
328	Facile synthesis of novel hierarchical graphene–Bi2O2CO3 composites with enhanced photocatalytic performance under visible light. Dalton Transactions, 2012, 41, 14345.	3.3	172
329	Noble-metal-free carbon nanotube-Cd0.1Zn0.9S composites for high visible-light photocatalytic H2-production performance. Nanoscale, 2012, 4, 2670.	5.6	154
330	The effect of calcination temperature on the microstructure and photocatalytic activity of TiO2-based composite nanotubes prepared by an in situ template dissolution method. Nanoscale, 2012, 4, 6597.	5.6	56
331	Tandem photocatalytic oxidation of Rhodamine B over surface fluorinated bismuth vanadate crystals. Journal of Materials Chemistry, 2012, 22, 17759.	6.7	114
332	Fabrication and CO2 adsorption performance of bimodal porous silica hollow spheres with amine-modified surfaces. RSC Advances, 2012, 2, 6784.	3.6	125
333	Noble Metal-Free Reduced Graphene Oxide-Zn _{<i>x</i>} Cd _{1–<i>x</i>} S Nanocomposite with Enhanced Solar Photocatalytic H ₂ -Production Performance. Nano Letters, 2012, 12, 4584-4589.	9.1	845
334	Rattle-type Carbon–Alumina Core–Shell Spheres: Synthesis and Application for Adsorption of Organic Dyes. ACS Applied Materials & Interfaces, 2012, 4, 2174-2179.	8.0	124
335	Enhanced visible-light photocatalytic H2-production performance of multi-armed CdS nanorods. RSC Advances, 2012, 2, 11829.	3.6	100
336	Unique photocatalytic oxidation reactivity and selectivity of TiO2–graphene nanocomposites. Nanoscale, 2012, 4, 3193.	5.6	176
337	Visibleâ€Light Photocatalytic Activity and Deactivation Mechanism of Ag ₃ PO ₄ Spherical Particles. Chemistry - an Asian Journal, 2012, 7, 1902-1908.	3.3	181
338	Enhanced photocatalytic activity of hierarchical macro/mesoporous TiO2–graphene composites for photodegradation of acetone in air. Applied Catalysis B: Environmental, 2012, 119-120, 109-116.	20.2	356
339	Fabrication and photovoltaic performance of hierarchically titanate tubular structures self-assembled by nanotubes and nanosheets. Chemical Communications, 2011, 47, 9161.	4.1	52
340	Facile Synthesis of Ordered Mesoporous Alumina and Alumina-Supported Metal Oxides with Tailored Adsorption and Framework Properties. Chemistry of Materials, 2011, 23, 1147-1157.	6.7	268
341	Preparation and Enhanced Visible-Light Photocatalytic H ₂ -Production Activity of Graphene/C ₃ N ₄ Composites. Journal of Physical Chemistry C, 2011, 115, 7355-7363.	3.1	1,694
342	Highly Efficient Visible-Light-Driven Photocatalytic Hydrogen Production of CdS-Cluster-Decorated Graphene Nanosheets. Journal of the American Chemical Society, 2011, 133, 10878-10884.	13.7	2,260

#	Article	IF	CITATIONS
343	Enhanced photocatalytic activity of bimodal mesoporous titania powders by C60 modification. Dalton Transactions, 2011, 40, 6635.	3.3	169
344	Synthesis and Enhanced Visible-Light Photoelectrocatalytic Activity of <i>p</i> â^' <i>n</i> Junction BiOI/TiO ₂ Nanotube Arrays. Journal of Physical Chemistry C, 2011, 115, 7339-7346.	3.1	503
345	Enhanced photocatalytic H2-production activity of graphene-modified titania nanosheets. Nanoscale, 2011, 3, 3670.	5.6	742
346	Novel urea assisted hydrothermal synthesis of hierarchical BiVO4/Bi2O2CO3 nanocomposites with enhanced visible-light photocatalytic activity. Applied Catalysis B: Environmental, 2011, 110, 286-295.	20.2	392
347	H ₂ WO ₄ ·H ₂ O/Ag/AgCl Composite Nanoplates: A Plasmonic Z-Scheme Visible-Light Photocatalyst. Journal of Physical Chemistry C, 2011, 115, 14648-14655.	3.1	255
348	Enhanced Photocatalytic H ₂ -Production Activity of TiO ₂ by Ni(OH) ₂ Cluster Modification. Journal of Physical Chemistry C, 2011, 115, 4953-4958.	3.1	392
349	Effect of nonionic structure-directing agents on adsorption and structural properties of mesoporous alumina. Journal of Materials Chemistry, 2011, 21, 9066.	6.7	44
350	Dye-sensitized solar cells based on anatase TiO2 hollow spheres/carbon nanotube composite films. Journal of Power Sources, 2011, 196, 7891-7898.	7.8	245
351	Synthesis of hierarchical Ni(OH)2 and NiO nanosheets and their adsorption kinetics and isotherms to Congo red in water. Journal of Hazardous Materials, 2011, 185, 889-897.	12.4	343
352	Microwaveâ€Hydrothermal Preparation and Visible‣ight Photoactivity of Plasmonic Photocatalyst Agâ€TiO ₂ Nanocomposite Hollow Spheres. Chemistry - an Asian Journal, 2010, 5, 1466-1474.	3.3	105
353	Synthesis and Enhanced Photocatalytic Activity of a Hierarchical Porous Flowerlike <i>p–n</i> Junction NiO/TiO ₂ Photocatalyst. Chemistry - an Asian Journal, 2010, 5, 2499-2506.	3.3	149
354	In situ Monitoring of Heterogeneous Catalytic Reactions. ChemPhysChem, 2010, 11, 1617-1618.	2.1	32
355	DNA-mediated morphosynthesis of calcium carbonate particles. Journal of Colloid and Interface Science, 2010, 352, 43-49.	9.4	37
356	Preparation and enhanced photocatalytic activity of Ag@TiO2 core–shell nanocomposite nanowires. Journal of Hazardous Materials, 2010, 177, 971-977.	12.4	232
357	Effects of microwave drying on the microstructure and photocatalytic activity of bimodal mesoporous TiO2 powders. Journal of Physics and Chemistry of Solids, 2010, 71, 523-526.	4.0	3
358	Hydrogen Production by Photocatalytic Water Splitting over Pt/TiO ₂ Nanosheets with Exposed (001) Facets. Journal of Physical Chemistry C, 2010, 114, 13118-13125.	3.1	1,071
359	Effect of Crystallization Methods on Morphology and Photocatalytic Activity of Anodized TiO ₂ Nanotube Array Films. Journal of Physical Chemistry C, 2010, 114, 19378-19385.	3.1	271
360	Template-free synthesis of hierarchical spindle-like γ-Al2O3 materials and their adsorption affinity towards organic and inorganic pollutants in water. Journal of Materials Chemistry, 2010, 20, 4587.	6.7	232

#	Article	IF	CITATIONS
361	Oneâ€Pot Templateâ€Free Synthesis of Monodisperse Zinc Sulfide Hollow Spheres and Their Photocatalytic Properties. Chemistry - A European Journal, 2009, 15, 6731-6739.	3.3	229
362	Preparation and photocatalytic activity of multi-modally macro/mesoporous titania. Research on Chemical Intermediates, 2009, 35, 653-665.	2.7	23
363	Enhancement of Photocatalytic Activity of Mesporous TiO ₂ Powders by Hydrothermal Surface Fluorination Treatment. Journal of Physical Chemistry C, 2009, 113, 6743-6750.	3.1	577
364	Synthesis of Hierarchical Flower-like AlOOH and TiO ₂ /AlOOH Superstructures and their Enhanced Photocatalytic Properties. Journal of Physical Chemistry C, 2009, 113, 17527-17535.	3.1	198
365	Synergetic Codoping in Fluorinated Ti _{1â^'<i>x</i>} Zr _{<i>x</i>} O ₂ Hollow Microspheres. Journal of Physical Chemistry C, 2009, 113, 10712-10717.	3.1	82
366	Synthesis of Boehmite Hollow Core/Shell and Hollow Microspheres via Sodium Tartrate-Mediated Phase Transformation and Their Enhanced Adsorption Performance in Water Treatment. Journal of Physical Chemistry C, 2009, 113, 14739-14746.	3.1	194
367	Effect of calcination temperatures on microstructures and photocatalytic activity of tungsten trioxide hollow microspheres. Journal of Hazardous Materials, 2008, 160, 621-628.	12.4	96
368	Facile fabrication of SiO2/Al2O3 composite microspheres with a simple electrostatic attraction strategy. Materials Research Bulletin, 2008, 43, 714-722.	5.2	21
369	Hydrothermal Synthesis and Photocatalytic Activity of Zinc Oxide Hollow Spheres. Environmental Science & Technology, 2008, 42, 4902-4907.	10.0	754
370	Novel preparation and photocatalytic activity of one-dimensional TiO2hollow structures. Nanotechnology, 2007, 18, 065604.	2.6	56
371	Hydrothermal Preparation and Photocatalytic Activity of Hierarchically Sponge-like Macro-/Mesoporous Titania. Journal of Physical Chemistry C, 2007, 111, 10582-10589.	3.1	443
372	Photocatalytic activity of the calcined H-titanate nanowires for photocatalytic oxidation of acetone in air. Chemosphere, 2007, 66, 2050-2057.	8.2	52
373	Facile preparation, characterization and optical properties of rectangular PbCrO4 single-crystal nanorods. Journal of Alloys and Compounds, 2007, 431, L4-L7.	5.5	19
374	Effects of polyvinylpyrrolidone and cetyltrimethylammonium bromide on morphology of lead tungstate particles. Journal of Alloys and Compounds, 2007, 433, 73-78.	5.5	13
375	Synthesis, characterization and photocatalytic activity of mesoporous titania nanorod/titanate nanotube composites. Journal of Hazardous Materials, 2007, 147, 581-587.	12.4	107
376	Effects of hydrothermal temperature and time on the photocatalytic activity and microstructures of bimodal mesoporous TiO2 powders. Applied Catalysis B: Environmental, 2007, 69, 171-180.	20.2	527
377	Morphology control of lead sulfide particles in mixed systems of poly-(styrene-alt-maleic acid) and cetyltrimethylammonium bromide. Materials Chemistry and Physics, 2007, 101, 379-382.	4.0	8
378	Effects of PSMA and experimental conditions on the morphologies of BaCO3 whiskers. Rare Metals, 2006, 25, 382-388.	7.1	11

#	Article	IF	CITATIONS
379	Synthesis of BaWO4 Hollow Structures. Crystal Growth and Design, 2006, 6, 2210-2213.	3.0	29
380	Facile preparation of Na-free anatase TiO2 film with highly photocatalytic activity on soda-lime glass. Catalysis Communications, 2006, 7, 1000-1004.	3.3	26
381	Enhanced photocatalytic activity of TiO2 powder (P25) by hydrothermal treatment. Journal of Molecular Catalysis A, 2006, 253, 112-118.	4.8	254
382	Effects of pH on the microstructures and photocatalytic activity of mesoporous nanocrystalline titania powders prepared via hydrothermal method. Journal of Molecular Catalysis A, 2006, 258, 104-112.	4.8	199
383	Preparation and photocatalytic activity of mesoporous anatase TiO2 nanofibers by a hydrothermal method. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 182, 121-127.	3.9	181
384	Preparation and formation mechanism of wood-block-like calcite particles. Journal of Solid State Chemistry, 2006, 179, 2547-2553.	2.9	4
385	Effects of Fe-doping on the photocatalytic activity of mesoporous TiO2 powders prepared by an ultrasonic method. Journal of Hazardous Materials, 2006, 137, 1838-1847.	12.4	401
386	Preparation, characterization and photocatalytic activity of novel TiO2 nanoparticle-coated titanate nanorods. Journal of Molecular Catalysis A, 2006, 253, 99-106.	4.8	33
387	Effects of Trifluoroacetic Acid Modification on the Surface Microstructures and Photocatalytic Activity of Mesoporous TiO2Thin Films. Langmuir, 2003, 19, 3889-3896.	3.5	160