
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2063535/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                      | IF                | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------|
| 1  | Game-changing alternatives to conventional fungicides: small RNAs and short peptides. Trends in<br>Biotechnology, 2022, 40, 320-337.                                                                                         | 9.3               | 14        |
| 2  | Branch Numbers and Crop Load Combination Effects on Production and Fruit Quality of Flat Peach<br>Cultivars (Prunus persica (L.) Batsch) Trained as Catalonian Vase. Plants, 2022, 11, 308.                                  | 3.5               | 8         |
| 3  | Organic vs conventional plant-based foods: A review. Food Chemistry, 2022, 383, 132352.                                                                                                                                      | 8.2               | 28        |
| 4  | Effects of the application of water stress-controlled technique on productive, qualitative and nutritional parameters on a late peach cultivar. Acta Horticulturae, 2022, , 483-490.                                         | 0.2               | 1         |
| 5  | Testing three strawberry cultivars for reduced water demand in the mid-Adriatic area. Acta<br>Horticulturae, 2022, , 467-476.                                                                                                | 0.2               | 0         |
| 6  | Evolution of blueberry (Vaccinium corymbosum L), raspberry (Rubus idaeus L) and strawberry<br>(Fragaria x ananassa Duch.) research: 2012–2021. Journal of Berry Research, 2022, 12, 365-381.                                 | 1.4               | 3         |
| 7  | Evaluation of Single-Cropping under Reduced Water Supply in Strawberry Cultivation. Agronomy, 2022, 12, 1396.                                                                                                                | 3.0               | 1         |
| 8  | Variation of Nutritional Quality Depending on Harvested Plant Portion of Broccoli and Black<br>Cabbage. Applied Sciences (Switzerland), 2022, 12, 6668.                                                                      | 2.5               | 3         |
| 9  | Improved nutritional quality in fruit tree species through traditional and biotechnological approaches. Trends in Food Science and Technology, 2021, 117, 125-138.                                                           | 15.1              | 39        |
| 10 | Environmental Conditions and Agronomical Factors Influencing the Levels of Phytochemicals in<br>Brassica Vegetables Responsible for Nutritional and Sensorial Properties. Applied Sciences<br>(Switzerland), 2021, 11, 1927. | 2.5               | 24        |
| 11 | RNA Interference Strategies for Future Management of Plant Pathogenic Fungi: Prospects and<br>Challenges. Plants, 2021, 10, 650.                                                                                             | 3.5               | 36        |
| 12 | Variation of polyphenol and vitamin C fruit content induced by strawberry breeding. Acta<br>Horticulturae, 2021, , 1017-1024.                                                                                                | 0.2               | 1         |
| 13 | †Francesca', †Lauretta', †Silvia' and †Dina': four new strawberry cultivars for northern an European cultivation conditions from the Marche Polytechnic University breeding programme. Acta Horticulturae, 2021, , 205-208.  | d southerr<br>0.2 | า<br>2    |
| 14 | Micropropagated strawberry mother plants for high quality frigo and plug plants nursery production. Acta Horticulturae, 2021, , 597-604.                                                                                     | 0.2               | 0         |
| 15 | Isolation and phenotypical characterization of the FT-like genes in strawberry (Fragaria × ananassa).<br>Acta Horticulturae, 2021, , 217-222.                                                                                | 0.2               | 3         |
| 16 | Preliminary results of different strawberry cultivars in multi-cropping soilless cultivation. Acta<br>Horticulturae, 2021, , 579-584.                                                                                        | 0.2               | 0         |
| 17 | RNAi-based approaches to induce resistance against grey mould disease in strawberry. Acta<br>Horticulturae, 2021, , 209-216.                                                                                                 | 0.2               | 1         |
| 18 | Evaluation of strawberry genotypes response to reduced water irrigation trial in southern Spain.<br>Acta Horticulturae, 2021, , 585-590.                                                                                     | 0.2               | 1         |

| #  | Article                                                                                                                                                                                                                              | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Preliminary results of soilless cultivated strawberry cultivars in the autumn-spring cycle in the mid-Adriatic area. Acta Horticulturae, 2021, , 591-596.                                                                            | 0.2  | 1         |
| 20 | Establishing micropropagation protocols for new strawberry ( <i>Fragaria</i> × <i>ananassa</i> )<br>breeding lines. Acta Horticulturae, 2021, , 573-578.                                                                             | 0.2  | 1         |
| 21 | Double-Stranded RNA Targeting Dicer-Like Genes Compromises the Pathogenicity of Plasmopara viticola on Grapevine. Frontiers in Plant Science, 2021, 12, 667539.                                                                      | 3.6  | 18        |
| 22 | Editorial: Advances and Challenges of RNAi Based Technologies for Plants. Frontiers in Plant Science, 2021, 12, 680242.                                                                                                              | 3.6  | 0         |
| 23 | Sprayâ€induced gene silencing for disease control is dependent on the efficiency of pathogen RNA<br>uptake. Plant Biotechnology Journal, 2021, 19, 1756-1768.                                                                        | 8.3  | 126       |
| 24 | Does RNAi-Based Technology Fit within EU Sustainability Goals?. Trends in Biotechnology, 2021, 39,<br>644-647.                                                                                                                       | 9.3  | 38        |
| 25 | The <i>FveFT2</i> florigen/ <i>FveTFL1</i> antiflorigen balance is critical for the control of seasonal flowering in strawberry while <i>FveFT3</i> modulates axillary meristem fate and yield. New Phytologist, 2021, 232, 372-387. | 7.3  | 23        |
| 26 | The efficacy of berries against lipopolysaccharide-induced inflammation: A review. Trends in Food<br>Science and Technology, 2021, 117, 74-91.                                                                                       | 15.1 | 18        |
| 27 | Strawberry-Derived Exosome-Like Nanoparticles Prevent Oxidative Stress in Human Mesenchymal Stromal Cells. Biomolecules, 2021, 11, 87.                                                                                               | 4.0  | 113       |
| 28 | Effects of the application of water stress-controlled technique on productive, qualitative and nutritional parameters on a late peach cultivar. Acta Horticulturae, 2021, , 483-490.                                                 | 0.2  | 0         |
| 29 | Sensorial and nutritional quality of inter and intra—Specific strawberry genotypes selected in resilient conditions. Scientia Horticulturae, 2020, 261, 108945.                                                                      | 3.6  | 22        |
| 30 | Strawberry ( <i>Fragaria</i> × <i>ananassa</i> cv. Romina) methanolic extract promotes browning in<br>3T3-L1 cells. Food and Function, 2020, 11, 297-304.                                                                            | 4.6  | 29        |
| 31 | RNAâ€based biocontrol compounds: current status and perspectives to reach the market. Pest<br>Management Science, 2020, 76, 841-845.                                                                                                 | 3.4  | 110       |
| 32 | Genetic Transformation in Peach (Prunus persica L.): Challenges and Ways Forward. Plants, 2020, 9,<br>971.                                                                                                                           | 3.5  | 31        |
| 33 | Biotechnological Approaches: Gene Overexpression, Gene Silencing, and Genome Editing to Control<br>Fungal and Oomycete Diseases in Grapevine. International Journal of Molecular Sciences, 2020, 21,<br>5701.                        | 4.1  | 39        |
| 34 | RNAi: What is its position in agriculture?. Journal of Pest Science, 2020, 93, 1125-1130.                                                                                                                                            | 3.7  | 84        |
| 35 | Biosafety of GM Crop Plants Expressing dsRNA: Data Requirements and EU Regulatory Considerations.<br>Frontiers in Plant Science, 2020, 11, 940.                                                                                      | 3.6  | 43        |
| 36 | Adventitious Shoot Regeneration from In Vitro Leaf Explants of the Peach Rootstock Hansen 536.<br>Plants, 2020, 9, 755.                                                                                                              | 3.5  | 10        |

| #  | Article                                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Yield and nutritional quality of highbush blueberry genotypes trialled in a Mediterranean hot summer climate. Journal of the Science of Food and Agriculture, 2020, 100, 3675-3686.                                                            | 3.5  | 8         |
| 38 | Application of the Non-Destructive NIR Technique for the Evaluation of Strawberry Fruits Quality Parameters. Foods, 2020, 9, 441.                                                                                                              | 4.3  | 37        |
| 39 | Food Quality and Functionality. , 2020, , 547-564.                                                                                                                                                                                             |      | Ο         |
| 40 | Factors Affecting the Regeneration, via Organogenesis, and the Selection of Transgenic Calli in the<br>Peach Rootstock Hansen 536 (Prunus persica × Prunus amygdalus) to Express an RNAi Construct<br>against PPV Virus. Plants, 2019, 8, 178. | 3.5  | 10        |
| 41 | Comparison of regeneration capacity and Agrobacterium-mediated cell transformation efficiency of different cultivars and rootstocks of Vitis spp. via organogenesis. Scientific Reports, 2019, 9, 582.                                         | 3.3  | 32        |
| 42 | A plant regeneration platform to apply new breeding techniques for improving disease resistance in grapevine rootstocks and cultivars. BIO Web of Conferences, 2019, 12, 01019.                                                                | 0.2  | 10        |
| 43 | The rootstock effects on vigor, production and fruit quality in sweet cherry (Prunus avium L.).<br>Journal of Berry Research, 2019, 9, 249-265.                                                                                                | 1.4  | 16        |
| 44 | Isolation of strawberry anthocyanin-rich fractions and their mechanisms of action against murine breast cancer cell lines. Food and Function, 2019, 10, 7103-7120.                                                                             | 4.6  | 48        |
| 45 | Comparing nursery behavior, field plant yield and fruit quality of in vitro and in vivo propagated strawberry mother plants. Plant Cell, Tissue and Organ Culture, 2019, 136, 65-74.                                                           | 2.3  | 22        |
| 46 | Relevance of functional foods in the Mediterranean diet: the role of olive oil, berries and honey in the prevention of cancer and cardiovascular diseases. Critical Reviews in Food Science and Nutrition, 2019, 59, 893-920.                  | 10.3 | 126       |
| 47 | Romina: A powerful strawberry with in vitro efficacy against uterine leiomyoma cells. Journal of<br>Cellular Physiology, 2019, 234, 7622-7633.                                                                                                 | 4.1  | 22        |
| 48 | Strawberry extracts efficiently counteract inflammatory stress induced by the endotoxin<br>lipopolysaccharide in Human Dermal Fibroblast. Food and Chemical Toxicology, 2018, 114, 128-140.                                                    | 3.6  | 54        |
| 49 | Pre-harvest factors influencing the quality of berries. Scientia Horticulturae, 2018, 233, 310-322.                                                                                                                                            | 3.6  | 86        |
| 50 | Overexpression of the Anthocyanidin Synthase Gene in Strawberry Enhances Antioxidant Capacity and<br>Cytotoxic Effects on Human Hepatic Cancer Cells. Journal of Agricultural and Food Chemistry, 2018,<br>66, 581-592.                        | 5.2  | 93        |
| 51 | Comparison study about processing methods (postharvest treatments) and their effects on the nutritional quality of different Brassica vegetables. Acta Horticulturae, 2018, , 127-134.                                                         | 0.2  | 0         |
| 52 | Phytochemical Composition and Cytotoxic Effects on Liver Hepatocellular Carcinoma Cells of<br>Different Berries Following a Simulated In Vitro Gastrointestinal Digestion. Molecules, 2018, 23, 1918.                                          | 3.8  | 17        |
| 53 | Status of strawberry breeding programs and cultivation systems in Europe and the rest of the world.<br>Journal of Berry Research, 2018, 8, 205-221.                                                                                            | 1.4  | 60        |
| 54 | Anti-inflammatory effect of strawberry extract against LPS-induced stress in RAW 264.7 macrophages.<br>Food and Chemical Toxicology, 2017, 102, 1-10.                                                                                          | 3.6  | 150       |

| #  | Article                                                                                                                                                                                                        | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Strawberry consumption improves aging-associated impairments, mitochondrial biogenesis and<br>functionality through the AMP-activated protein kinase signaling cascade. Food Chemistry, 2017, 234,<br>464-471. | 8.2 | 98        |
| 56 | Evaluation of vitamin C content in fruit and leaves of different strawberry genotypes. Acta<br>Horticulturae, 2017, , 371-378.                                                                                 | 0.2 | 12        |
| 57 | The effects of strawberry bioactive compounds on human health. Acta Horticulturae, 2017, , 355-362.                                                                                                            | 0.2 | 9         |
| 58 | Evaluation of strawberry (Fragaria×ananassaDuch.) â€~Alba' sensorial and nutritional quality, and its in<br>vitro effects against human breast cancer cells viability. Acta Horticulturae, 2017, , 379-388.    | 0.2 | 4         |
| 59 | The healthy effects of strawberry bioactive compounds on molecular pathways related to chronic diseases. Annals of the New York Academy of Sciences, 2017, 1398, 62-71.                                        | 3.8 | 46        |
| 60 | Data on body weight and liver functionality in aged rats fed an enriched strawberry diet. Data in Brief, 2017, 13, 432-436.                                                                                    | 1.0 | 3         |
| 61 | New Biotechnological Tools for the Genetic Improvement of Major Woody Fruit Species. Frontiers in<br>Plant Science, 2017, 8, 1418.                                                                             | 3.6 | 102       |
| 62 | Protective Effect of Strawberry Extract against Inflammatory Stress Induced in Human Dermal<br>Fibroblasts. Molecules, 2017, 22, 164.                                                                          | 3.8 | 19        |
| 63 | Strawberry-Based Cosmetic Formulations Protect Human Dermal Fibroblasts against UVA-Induced Damage. Nutrients, 2017, 9, 605.                                                                                   | 4.1 | 50        |
| 64 | Lipid Accumulation in HepG2 Cells Is Attenuated by Strawberry Extract through AMPK Activation.<br>Nutrients, 2017, 9, 621.                                                                                     | 4.1 | 74        |
| 65 | Strawberry (cv. Romina) Methanolic Extract and Anthocyanin-Enriched Fraction Improve Lipid Profile and Antioxidant Status in HepC2 Cells. International Journal of Molecular Sciences, 2017, 18, 1149.         | 4.1 | 45        |
| 66 | An anthocyanin rich strawberry extract induces apoptosis and ROS while decreases glycolysis and fibrosis in human uterine leiomyoma cells. Oncotarget, 2017, 8, 23575-23587.                                   | 1.8 | 33        |
| 67 | Strawberry Achenes Are an Important Source of Bioactive Compounds for Human Health.<br>International Journal of Molecular Sciences, 2016, 17, 1103.                                                            | 4.1 | 55        |
| 68 | Chemopreventive and Therapeutic Effects of Edible Berries: A Focus on Colon Cancer Prevention and<br>Treatment. Molecules, 2016, 21, 169.                                                                      | 3.8 | 130       |
| 69 | Fighting Sharka in Peach: Current Limitations and Future Perspectives. Frontiers in Plant Science, 2016,<br>7, 1290.                                                                                           | 3.6 | 26        |
| 70 | TDZ, 2iP and zeatin in blueberry ( <i>Vaccinium corymbosum</i> L. â€~Duke') in vitro proliferation and organogenesis. Acta Horticulturae, 2016, , 321-324.                                                     | 0.2 | 4         |
| 71 | Study on adaptability of blueberry cultivars in center-south Europe. Acta Horticulturae, 2016, , 53-58.                                                                                                        | 0.2 | 4         |
| 72 | Genetic transformation of peach rootstock and cultivar to induce resistance against PPV virus through post-transcriptional gene silencing. Acta Horticulturae, 2016, , 223-228.                                | 0.2 | 0         |

| #  | Article                                                                                                                                                                                                                                          | IF               | CITATIONS        |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------|
| 73 | The sustainable improvement of European berry production, quality and nutritional value in a changing environment: strawberries, currants, blackberries, blueberries and raspberries – the EUBerry project. Acta Horticulturae, 2016, , 309-314. | 0.2              | 5                |
| 74 | Can we breed a healthier strawberry and claim it?. Acta Horticulturae, 2016, , 7-14.                                                                                                                                                             | 0.2              | 9                |
| 75 | Effect of strawberry fruit phytochemical composition on color stability of thermal processed puree after long-term storage under ambient and refrigeration conditions. Acta Horticulturae, 2016, , 213-220.                                      | 0.2              | 2                |
| 76 | â€~Romina' and â€~Cristina': two new strawberry cultivars for the European and USA market. Acta<br>Horticulturae, 2016, , 71-76.                                                                                                                 | 0.2              | 2                |
| 77 | Promising Health Benefits of the Strawberry: A Focus on Clinical Studies. Journal of Agricultural and Food Chemistry, 2016, 64, 4435-4449.                                                                                                       | 5.2              | 189              |
| 78 | Breeding Strawberry for Higher Phytochemicals Content and Claim It: Is It Possible?. International<br>Journal of Fruit Science, 2016, 16, 194-206.                                                                                               | 2.4              | 43               |
| 79 | Romina and Cristina: Two New Strawberry Cultivars with High Sensorial and Nutritional Values.<br>International Journal of Fruit Science, 2016, 16, 207-219.                                                                                      | 2.4              | 25               |
| 80 | Metabolic changes of genetically engineered grapes (Vitis vinifera L.) studied by 1H-NMR, metabolite heatmaps and iPLS. Metabolomics, 2016, 12, 1.                                                                                               | 3.0              | 6                |
| 81 | Agronomic and nutritional quality, and fresh and processing attitude, of globe artichoke (Cynara) Tj ETQq1 1 0.78<br>Biotechnology, 2016, 91, 634-644.                                                                                           | 4314 rgBT<br>1.9 | 7  Overlock<br>5 |
| 82 | Polyphenol-rich strawberry extract (PRSE) shows in vitro and in vivo biological activity against invasive breast cancer cells. Scientific Reports, 2016, 6, 30917.                                                                               | 3.3              | 78               |
| 83 | Biosafety capacity building: experiences and challenges of a distance learning approach. Acta<br>Horticulturae, 2016, , 211-214.                                                                                                                 | 0.2              | 0                |
| 84 | Strawberry consumption alleviates doxorubicin-induced toxicity by suppressing oxidative stress.<br>Food and Chemical Toxicology, 2016, 94, 128-137.                                                                                              | 3.6              | 44               |
| 85 | The use of TDZ for the efficient in vitro regeneration and organogenesis of strawberry and blueberry cultivars. Scientia Horticulturae, 2016, 207, 117-124.                                                                                      | 3.6              | 53               |
| 86 | The Healthy Effects of Strawberry Polyphenols: Which Strategy behind Antioxidant Capacity?. Critical Reviews in Food Science and Nutrition, 2016, 56, S46-S59.                                                                                   | 10.3             | 129              |
| 87 | The genetic aspects of berries: from field to health. Journal of the Science of Food and Agriculture, 2016, 96, 365-371.                                                                                                                         | 3.5              | 124              |
| 88 | A Pilot Study of the Photoprotective Effects of Strawberry-Based Cosmetic Formulations on Human<br>Dermal Fibroblasts. International Journal of Molecular Sciences, 2015, 16, 17870-17884.                                                       | 4.1              | 19               |
| 89 | Physico-chemical characteristics of thermally processed purée from different strawberry genotypes.<br>Journal of Food Composition and Analysis, 2015, 43, 106-118.                                                                               | 3.9              | 16               |
| 90 | Strawberry as a health promoter: an evidence based review. Food and Function, 2015, 6, 1386-1398.                                                                                                                                                | 4.6              | 255              |

| #   | Article                                                                                                                                                                                                                                            | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Strawberry (Fragaria × ananassa). Methods in Molecular Biology, 2015, 1224, 217-227.                                                                                                                                                               | 0.9 | 16        |
| 92  | Polyphenol-Rich Strawberry Extract Protects Human Dermal Fibroblasts against Hydrogen Peroxide<br>Oxidative Damage and Improves Mitochondrial Functionality. Molecules, 2014, 19, 7798-7816.                                                       | 3.8 | 87        |
| 93  | DTREEv2, a computer-based support system for the risk assessment of genetically modified plants. New Biotechnology, 2014, 31, 166-171.                                                                                                             | 4.4 | 1         |
| 94  | One-month strawberry-rich anthocyanin supplementation ameliorates cardiovascular risk, oxidative stress markers and platelet activation in humans. Journal of Nutritional Biochemistry, 2014, 25, 289-294.                                         | 4.2 | 286       |
| 95  | Strawberry intake increases blood fluid, erythrocyte and mononuclear cell defenses against oxidative challenge. Food Chemistry, 2014, 156, 87-93.                                                                                                  | 8.2 | 48        |
| 96  | Rootstock and fruit canopy position affect peach [Prunus persica (L.) Batsch] (cv. Rich May) plant productivity and fruit sensorial and nutritional quality. Food Chemistry, 2014, 153, 234-242.                                                   | 8.2 | 64        |
| 97  | An anthocyanin-rich strawberry extract protects against oxidative stress damage and improves<br>mitochondrial functionality in human dermal fibroblasts exposed to an oxidizing agent. Food and<br>Function, 2014, 5, 1939.                        | 4.6 | 105       |
| 98  | Use of Wild Genotypes in Breeding Program Increases Strawberry Fruit Sensorial and Nutritional Quality. Journal of Agricultural and Food Chemistry, 2014, 62, 3944-3953.                                                                           | 5.2 | 41        |
| 99  | Doxorubicin-Induced Oxidative Stress in Rats Is Efficiently Counteracted by Dietary Anthocyanin<br>Differently Enriched Strawberry ( <i>Fragaria</i> × <i>ananassa</i> Duch.). Journal of Agricultural<br>and Food Chemistry, 2014, 62, 3935-3943. | 5.2 | 46        |
| 100 | Biosafety capacity building: experiences and challenges from a distance learning approach. New<br>Biotechnology, 2014, 31, 64-68.                                                                                                                  | 4.4 | 13        |
| 101 | INTEGRATING BREEDING AND BIOTECH FOR IMPROVING STRAWBERRY NUTRITIONAL QUALITY. Acta<br>Horticulturae, 2014, , 89-97.                                                                                                                               | 0.2 | 2         |
| 102 | Biosafety considerations of RNAi-mediated virus resistance in fruit-tree cultivars and in rootstock.<br>Transgenic Research, 2013, 22, 1073-1088.                                                                                                  | 2.4 | 32        |
| 103 | The potential impact of strawberry on human health. Natural Product Research, 2013, 27, 448-455.                                                                                                                                                   | 1.8 | 73        |
| 104 | EUBerry: The Sustainable Improvement of European Berry Production, Quality, and Nutritional Value in a Changing Environment. International Journal of Fruit Science, 2013, 13, 60-66.                                                              | 2.4 | 5         |
| 105 | Inter-Specific Back-Crosses and Intra-Specific Crosses to Generate Strawberry Genetic Material with<br>Increased Fruit Sensory and Nutritional Quality. International Journal of Fruit Science, 2013, 13,<br>196-204.                              | 2.4 | 2         |
| 106 | Preliminary evaluation of fruit traits and phytochemicals in a highbush blueberry seedling population. Journal of Berry Research, 2013, 3, 103-111.                                                                                                | 1.4 | 5         |
| 107 | Breeding and biotechnology for improving the nutritional quality of strawberry. Journal of Berry<br>Research, 2013, 3, 127-133.                                                                                                                    | 1.4 | 12        |
| 108 | Effects of an acute strawberry (Fragaria × ananassa) consumption on the plasma antioxidant status of<br>healthy subjects. Journal of Berry Research, 2013, 3, 169-179.                                                                             | 1.4 | 29        |

| #   | Article                                                                                                                                                                                                                         | IF          | CITATIONS                           |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------------------------------|
| 109 | MORPHOLOGICAL, NUTRACEUTICAL AND CHEMICAL CHARACTERIZATION OF GLOBE ARTICHOKE (CYNARA) TJ E<br>Horticulturae, 2013, , 39-46.                                                                                                    | TQq1<br>0.2 | 1 0.784314 rg <mark>8</mark> T<br>3 |
| 110 | ROOTSTOCKS EVALUATION FOR EUROPEAN AND JAPANESE PLUMS IN ITALY. Acta Horticulturae, 2012, , 137-146.                                                                                                                            | 0.2         | 7                                   |
| 111 | Influence of growing conditions at different latitudes of Europe on strawberry growth performance, yield and quality. Journal of Berry Research, 2012, 2, 143-157.                                                              | 1.4         | 68                                  |
| 112 | Photoprotective Potential of Strawberry (Fragaria×ananassa) Extract against UV-A Irradiation Damage<br>on Human Fibroblasts. Journal of Agricultural and Food Chemistry, 2012, 60, 2322-2327.                                   | 5.2         | 94                                  |
| 113 | Standardized method for evaluation of strawberry (Fragaria×ananassa Duch.) germplasm collections<br>as a genetic resource for fruit nutritional compounds. Journal of Food Composition and Analysis,<br>2012, 28, 170-178.      | 3.9         | 24                                  |
| 114 | Increasing Strawberry Fruit Sensorial and Nutritional Quality Using Wild and Cultivated Germplasm.<br>PLoS ONE, 2012, 7, e46470.                                                                                                | 2.5         | 83                                  |
| 115 | The strawberry: Composition, nutritional quality, and impact on human health. Nutrition, 2012, 28, 9-19.                                                                                                                        | 2.4         | 695                                 |
| 116 | REGENERATION AND GENETIC TRANSFORMATION VIA ORGANOGENESIS OF DIFFERENT CULTIVARS OF VITIS VINIFERA AND PRUNUS PERSICA. Acta Horticulturae, 2012, , 393-396.                                                                     | 0.2         | 5                                   |
| 117 | Unsupervised Principal Component Analysis of NMR Metabolic Profiles for the Assessment of<br>Substantial Equivalence of Transgenic Grapes (Vitis vinifera). Journal of Agricultural and Food<br>Chemistry, 2011, 59, 9271-9279. | 5.2         | 40                                  |
| 118 | Open Field Trial of Genetically Modified Parthenocarpic Tomato. , 2011, , 160-174.                                                                                                                                              |             | 0                                   |
| 119 | Strawberry consumption improves plasma antioxidant status and erythrocyte resistance to oxidative haemolysis in humans. Food Chemistry, 2011, 128, 180-186.                                                                     | 8.2         | 89                                  |
| 120 | Influence of environmental and genetic factors on health-related compounds in strawberry. Food<br>Chemistry, 2011, 124, 906-913.                                                                                                | 8.2         | 118                                 |
| 121 | Strawberry Polyphenols Attenuate Ethanol-Induced Gastric Lesions in Rats by Activation of Antioxidant Enzymes and Attenuation of MDA Increase. PLoS ONE, 2011, 6, e25878.                                                       | 2.5         | 166                                 |
| 122 | Food safety considerations for the assessment of a genetically modified tomato fortified for folate production. Mediterranean Journal of Nutrition and Metabolism, 2010, 3, 1-8.                                                | 0.5         | 1                                   |
| 123 | Evaluation of F. x ananassa intra-specific and inter-specific back-crosses to generate new genetic material with increased fruit nutritional quality. Journal of Berry Research, 2010, 1, 103-114.                              | 1.4         | 19                                  |
| 124 | Biotechnology and Breeding for Enhancing the Nutritional Value of Berry Fruit. , 2010, , 61-80.                                                                                                                                 |             | 3                                   |
| 125 | Quality determinants of fruit and vegetables productions. Italian Journal of Agronomy, 2009, 4, 103.                                                                                                                            | 1.0         | 2                                   |
| 126 | VARIATION IN STRAWBERRY MICRONUTRIENTS, PHYTOCHEMICAL AND ANTIOXIDANT PROFILES: THE COMBINED EFFECT OF GENOTYPE AND STORAGE. Acta Horticulturae, 2009, , 867-872.                                                               | 0.2         | 10                                  |

| #   | Article                                                                                                                                                                                               | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | THE INTERACTION OF PLANT GENOTYPE AND TEMPERATURE CONDITIONS AT RIPENING STAGE AFFECTS STRAWBERRY NUTRITIONAL QUALITY. Acta Horticulturae, 2009, , 183-186.                                           | 0.2 | 9         |
| 128 | Impact of strawberries on human health: insight into marginally discussed bioactive compounds for the Mediterranean diet. Public Health Nutrition, 2009, 12, 1656-1662.                               | 2.2 | 66        |
| 129 | ROLC strawberry plant adaptability, productivity, and tolerance to soil-borne disease and mycorrhizal interactions. Transgenic Research, 2009, 18, 933-942.                                           | 2.4 | 22        |
| 130 | Bioactive compounds in berries relevant to human health. Nutrition Reviews, 2009, 67, S145-S150.                                                                                                      | 5.8 | 183       |
| 131 | Ascorbate, not urate, modulates the plasma antioxidant capacity after strawberry intake. Food<br>Chemistry, 2009, 117, 181-188.                                                                       | 8.2 | 67        |
| 132 | GMO Strawberry: Methods, Risk and Benefits. , 2009, , 487-506.                                                                                                                                        |     | 5         |
| 133 | COMPARING FRIGO AND FRESH PLANTS IN NON-FUMIGATED AND HEAVY SOIL: THE RESPONSE OF 10 STRAWBERRY GENOTYPES. Acta Horticulturae, 2009, , 129-134.                                                       | 0.2 | 2         |
| 134 | EFFECTS OF STRAWBERRY CONSUMPTION ON PLASMA ANTIOXIDANT STATUS AND PARAMETERS OF<br>RESISTANCE TO OXIDATIVE STRESS: PRELIMINARY EVIDENCE FROM HUMAN SUBJECTS. Acta Horticulturae,<br>2009, , 873-876. | 0.2 | 3         |
| 135 | Combining quality and antioxidant attributes in the strawberry: The role of genotype. Food Chemistry, 2008, 111, 872-878.                                                                             | 8.2 | 177       |
| 136 | Folate content in different strawberry genotypes and folate status in healthy subjects after strawberry consumption. BioFactors, 2008, 34, 47-55.                                                     | 5.4 | 31        |
| 137 | Breeding strawberry ( <i>Fragaria X ananassa</i> Duch) to increase fruit nutritional quality.<br>BioFactors, 2008, 34, 67-72.                                                                         | 5.4 | 53        |
| 138 | Antioxidants, Phenolic Compounds, and Nutritional Quality of Different Strawberry Genotypes.<br>Journal of Agricultural and Food Chemistry, 2008, 56, 696-704.                                        | 5.2 | 396       |
| 139 | Auxin Synthesis-Encoding Transgene Enhances Grape Fecundity. Plant Physiology, 2007, 143, 1689-1694.                                                                                                  | 4.8 | 54        |
| 140 | Quality, Nutritional Value and Therapeutical Properties of Foods: Highlights in Fruit Research.<br>Hungarian Medical Journal, 2007, 1, 25-30.                                                         | 0.0 | 0         |
| 141 | TDZ, auxin and genotype effects on leaf organogenesis in Fragaria. Plant Cell Reports, 2006, 25, 281-288.                                                                                             | 5.6 | 77        |
| 142 | Update on fruit antioxidant capacity: a key tool for Mediterranean diet. Public Health Nutrition, 2006,<br>9, 1099-1103.                                                                              | 2.2 | 30        |
| 143 | Breeding and biotechnology for improving berry nutritional quality. BioFactors, 2005, 23, 213-220.                                                                                                    | 5.4 | 29        |
| 144 | Total antioxidant capacity evaluation: Critical steps for assaying berry antioxidant features.<br>BioFactors, 2005, 23, 221-227.                                                                      | 5.4 | 45        |

9

| #   | Article                                                                                                                                                                                                                                           | IF              | CITATIONS           |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------------|
| 145 | Plant genotype affects total antioxidant capacity and phenolic contents in fruit. Nutrition, 2005, 21, 207-213.                                                                                                                                   | 2.4             | 533                 |
| 146 | Open field trial of genetically modified parthenocarpic tomato: seedlessness and fruit quality. BMC<br>Biotechnology, 2005, 5, 32.                                                                                                                | 3.3             | 55                  |
| 147 | The rootstock effects on plant adaptability, production, fruit quality, and nutrition in the peach (cv.) Tj ETQq1 1 C                                                                                                                             | ).784314<br>3.6 | rgBT /Overlo<br>100 |
| 148 | The defH9-iaaM auxin-synthesizing gene increases plant fecundity and fruit production in strawberry and raspberry. BMC Biotechnology, 2004, 4, 4.                                                                                                 | 3.3             | 119                 |
| 149 | GENETIC TRANSFORMATION IN STRAWBERRY AND RASPBERRY FOR IMPROVING PLANT PRODUCTIVITY AND FRUIT QUALITY. Acta Horticulturae, 2004, , 107-110.                                                                                                       | 0.2             | 14                  |
| 150 | GENETIC ENGINEERING OF PARTHENOCARPIC FRUIT DEVELOPMENT IN STRAWBERRY. Acta Horticulturae, 2002, , 101-104.                                                                                                                                       | 0.2             | 11                  |
| 151 | Genetic transformation of Vitis vinifera via organogenesis. BMC Biotechnology, 2002, 2, 18.                                                                                                                                                       | 3.3             | 73                  |
| 152 | Phytotoxic Protein PcF, Purification, Characterization, and cDNA Sequencing of a Novel<br>Hydroxyproline-containing Factor Secreted by the Strawberry Pathogen Phytophthora cactorum.<br>Journal of Biological Chemistry, 2001, 276, 21578-21584. | 3.4             | 77                  |
| 153 | Peg-mediated fusion ofRubus idaeus(raspberry) andR. fruticosus(blackberry) protoplasts, selection and characterisation of callus lines. Plant Biosystems, 2001, 135, 63-69.                                                                       | 1.6             | 6                   |
| 154 | Somatic embryogenesis in Canary Island date palm. Plant Cell, Tissue and Organ Culture, 1999, 56, 1-7.                                                                                                                                            | 2.3             | 25                  |
| 155 | Plant genotype and growth regulators interaction affecting in vitro morphogenesis of blackberry and raspberry. Biologia Plantarum, 1997, 39, 139-150.                                                                                             | 1.9             | 23                  |
| 156 | Interaction of Partially Purified Phytotoxins from <i>Phytophthora cactorum</i> on Apple Cell<br>Plasma Membrane. Journal of Phytopathology, 1994, 142, 219-226.                                                                                  | 1.0             | 4                   |
| 157 | Interaction of Partially Purified Phytotoxins from <i>Phytophthora cactorum</i> on Apple Cell<br>Plasma Membrane. Journal of Phytopathology, 1994, 142, 219-226.                                                                                  | 1.0             | 2                   |
| 158 | Merocyanine 540 as an optical probe to monitor the effects of culture filtrates of Phytophthora cactorum on apple cell membranes. Plant Science, 1992, 83, 163-167.                                                                               | 3.6             | 14                  |
| 159 | Actinidia deliciosa C.F. Liang in vitro. Plant Cell, Tissue and Organ Culture, 1991, 25, 91-98.                                                                                                                                                   | 2.3             | 21                  |
| 160 | Actinidia deliciosa in vitro II. Growth and exogenous carbohydrates utilization by explants. Plant Cell,<br>Tissue and Organ Culture, 1991, 26, 153-160.                                                                                          | 2.3             | 13                  |
| 161 | IN VITRO SELECTION OF APPLE ROOTSTOCK SOMACLONES WITH PHYTOPHTHORA CACTORUM CULTURE<br>FILTRATE. Acta Horticulturae, 1990, , 409-416.                                                                                                             | 0.2             | 30                  |
| 162 | SCREENING FOR PHYTOPHTHORA CACTORUM RESISTANCE WITH CULTURE FILTRATES OF THE FUNGUS Acta<br>Horticulturae, 1989, , 123-128.                                                                                                                       | 0.2             | 6                   |

| #   | Article                                                                                                                                       | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Ophiostoma ulmi metabolites and elm cell membrane permeability. Possible use in early tests of resistance. Forest Pathology, 1988, 18, 77-84. | 1.1 | 5         |
| 164 | Editorial: Advances and Challenges of RNAi Based Technologies for Plants—Volume 2. Frontiers in<br>Plant Science, 0, 13, .                    | 3.6 | 1         |