Andrew J Trevelyan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2063362/publications.pdf

Version: 2024-02-01

52 papers

2,871 citations

236925 25 h-index 243625 44 g-index

65 all docs

65 docs citations

65 times ranked 2949 citing authors

#	Article	IF	CITATIONS
1	Evidence of an inhibitory restraint of seizure activity in humans. Nature Communications, 2012, 3, 1060.	12.8	365
2	Modular Propagation of Epileptiform Activity: Evidence for an Inhibitory Veto in Neocortex. Journal of Neuroscience, 2006, 26, 12447-12455.	3.6	309
3	Feedforward Inhibition Contributes to the Control of Epileptiform Propagation Speed. Journal of Neuroscience, 2007, 27, 3383-3387.	3.6	244
4	Ictal high frequency oscillations distinguish two types of seizure territories in humans. Brain, 2013, 136, 3796-3808.	7.6	188
5	The ictal wavefront is the spatiotemporal source of discharges during spontaneous human seizures. Nature Communications, 2016, 7, 11098.	12.8	124
6	The Contribution of Raised Intraneuronal Chloride to Epileptic Network Activity. Journal of Neuroscience, 2015, 35, 7715-7726.	3.6	116
7	Neural Stem Cells in the Adult Subventricular Zone Oxidize Fatty Acids to Produce Energy and Support Neurogenic Activity. Stem Cells, 2015, 33, 2306-2319.	3.2	111
8	How inhibition influences seizure propagation. Neuropharmacology, 2013, 69, 45-54.	4.1	105
9	Seizure localization using ictal phase-locked high gamma. Neurology, 2015, 84, 2320-2328.	1.1	95
10	Opportunities for improving animal welfare in rodent models of epilepsy and seizures. Journal of Neuroscience Methods, 2016, 260, 2-25.	2.5	93
11	Single unit action potentials in humans and the effect of seizure activity. Brain, 2015, 138, 2891-2906.	7.6	81
12	Modulation of brain cation-Clâ^' cotransport via the SPAK kinase inhibitor ZT-1a. Nature Communications, 2020, 11, 78.	12.8	69
13	Excitatory GABAergic signalling is associated with benzodiazepine resistance in status epilepticus. Brain, 2019, 142, 3482-3501.	7.6	67
14	The Direct Relationship between Inhibitory Currents and Local Field Potentials. Journal of Neuroscience, 2009, 29, 15299-15307.	3.6	61
15	Mechanisms underlying different onset patterns of focal seizures. PLoS Computational Biology, 2017, 13, e1005475.	3.2	60
16	Detailed passive cable models of layer 2/3 pyramidal cells in rat visual cortex at different temperatures. Journal of Physiology, 2002, 539, 623-636.	2.9	59
17	The contribution of synaptic location to inhibitory gain control in pyramidal cells. Physiological Reports, 2013, 1, e00067.	1.7	58
18	The Source of Afterdischarge Activity in Neocortical Tonic–Clonic Epilepsy. Journal of Neuroscience, 2007, 27, 13513-13519.	3.6	57

#	Article	IF	Citations
19	Cellular mechanisms of high frequency oscillations in epilepsy: On the diverse sources of pathological activities. Epilepsy Research, 2011, 97, 308-317.	1.6	55
20	Multiscale recordings reveal the dynamic spatial structure of human seizures. Neurobiology of Disease, 2019, 127, 303-311.	4.4	50
21	Feedforward inhibition ahead of ictal wavefronts is provided by both parvalbumin―and somatostatinâ€expressing interneurons. Journal of Physiology, 2019, 597, 2297-2314.	2.9	47
22	Mitochondrial DNA mutations affect calcium handling in differentiated neurons. Brain, 2010, 133, 787-796.	7.6	43
23	Moderate acute alcohol intoxication has minimal effect on surround suppression measured with a motion direction discrimination task. Journal of Vision, 2015, 15, 5-5.	0.3	43
24	Does inhibition balance excitation in neocortex?. Progress in Biophysics and Molecular Biology, 2005, 87, 109-143.	2.9	36
25	Seizure pathways change on circadian and slower timescales in individual patients with focal epilepsy. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 11048-11058.	7.1	36
26	Cl-out is a novel cooperative optogenetic tool for extruding chloride from neurons. Nature Communications, 2016, 7, 13495.	12.8	31
27	Chloride dynamics alter the input-output properties of neurons. PLoS Computational Biology, 2020, 16, e1007932.	3.2	28
28	The Role of Inhibition in Epileptic Networks. Journal of Clinical Neurophysiology, 2015, 32, 227-234.	1.7	25
29	Do Cortical Circuits Need Protecting from Themselves?. Trends in Neurosciences, 2016, 39, 502-511.	8.6	24
30	Divergent paths to seizureâ€like events. Physiological Reports, 2019, 7, e14226.	1.7	23
31	Regionâ€specific differences and areal interactions underlying transitions in epileptiform activity. Journal of Physiology, 2019, 597, 2079-2096.	2.9	23
32	Neuronal Firing and Waveform Alterations through Ictal Recruitment in Humans. Journal of Neuroscience, 2021, 41, 766-779.	3 . 6	21
33	The information content of physiological and epileptic brain activity. Journal of Physiology, 2013, 591, 799-805.	2.9	20
34	Genetically encoded sensors for Chloride concentration. Journal of Neuroscience Methods, 2022, 368, 109455.	2.5	16
35	Gain control through divisive inhibition prevents abrupt transition to chaos in a neural mass model. Physical Review E, 2015, 92, 032723.	2.1	15
36	Pyramidal cell activity levels affect the polarity of activity-induced gene transcription changes in interneurons. Journal of Neurophysiology, 2018, 120, 2358-2367.	1.8	13

#	Article	IF	CITATIONS
37	A multiorganism pipeline for antiseizure drug discovery: Identification of chlorothymol as a novel $\hat{I}^3 \hat{a} \in \mathbf{a}$ minobutyric acidergic anticonvulsant. Epilepsia, 2020, 61, 2106-2118.	5.1	9
38	Stressâ€testing the brain to understand its breaking points. Journal of Physiology, 2018, 596, 2033-2034.	2.9	5
39	Simultaneous profiling of activity patterns in multiple neuronal subclasses. Journal of Neuroscience Methods, 2018, 303, 16-29.	2.5	5
40	A Closed-Loop Optogenetic Platform. Frontiers in Neuroscience, 2021, 15, 718311.	2.8	4
41	Propagating Activity in Neocortex, Mediated by Gap Junctions and Modulated by Extracellular Potassium. ENeuro, 2020, 7, ENEURO.0387-19.2020.	1.9	3
42	PV-specific loss of the transcriptional coactivator PGC- $1\hat{l}\pm$ slows down the evolution of epileptic activity in an acute ictogenic model. Journal of Neurophysiology, 2022, 127, 86-98.	1.8	3
43	Divisive gain modulation enables flexible and rapid entrainment in a neocortical microcircuit model. Journal of Neurophysiology, 2020, 123, 1133-1143.	1.8	2
44	Graphical user interface for simultaneous profiling of activity patterns in multiple neuronal subclasses. Data in Brief, 2018, 20, 226-233.	1.0	1
45	Intrinsic Cortical Mechanisms which Oppose Epileptiform Activity: Implications for Seizure Prediction., 0,, 149-161.		1
46	Why do some brains seize? Molecular, cellular and network mechanisms. Journal of Physiology, 2013, 591, 751-752.	2.9	0
47	Chloride dynamics alter the input-output properties of neurons. , 2020, 16, e1007932.		0
48	Chloride dynamics alter the input-output properties of neurons., 2020, 16, e1007932.		0
49	Chloride dynamics alter the input-output properties of neurons., 2020, 16, e1007932.		0
50	Chloride dynamics alter the input-output properties of neurons., 2020, 16, e1007932.		0
51	Chloride dynamics alter the input-output properties of neurons. , 2020, 16, e1007932.		0
52	Chloride dynamics alter the input-output properties of neurons. , 2020, 16, e1007932.		0