Thomas Mueller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2062583/publications.pdf

Version: 2024-02-01

76326 64796 6,991 85 40 79 citations h-index g-index papers 87 87 87 8466 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Moving in the Anthropocene: Global reductions in terrestrial mammalian movements. Science, 2018, 359, 466-469.	12.6	783
2	The Normalized Difference Vegetation Index (NDVI): unforeseen successes in animal ecology. Climate Research, 2011, 46, 15-27.	1.1	546
3	COVID-19 lockdown allows researchers to quantify the effects of human activity on wildlife. Nature Ecology and Evolution, 2020, 4, 1156-1159.	7.8	413
4	Spatial memory and animal movement. Ecology Letters, 2013, 16, 1316-1329.	6.4	402
5	Search and navigation in dynamic environments – from individual behaviors to population distributions. Oikos, 2008, 117, 654-664.	2.7	315
6	Rigorous home range estimation with movement data: a new autocorrelated kernel density estimator. Ecology, 2015, 96, 1182-1188.	3.2	279
7	Social Learning of Migratory Performance. Science, 2013, 341, 999-1002.	12.6	270
8	From Fine-Scale Foraging to Home Ranges: A Semivariance Approach to Identifying Movement Modes across Spatiotemporal Scales. American Naturalist, 2014, 183, E154-E167.	2.1	176
9	Integrating movement ecology with biodiversity research - exploring new avenues to address spatiotemporal biodiversity dynamics. Movement Ecology, 2013, 1, 6.	2.8	169
10	In search of forage: predicting dynamic habitats of Mongolian gazelles using satelliteâ€based estimates of vegetation productivity. Journal of Applied Ecology, 2008, 45, 649-658.	4.0	167
11	How landscape dynamics link individual- to population-level movement patterns: a multispecies comparison of ungulate relocation data. Global Ecology and Biogeography, 2011, 20, 683-694.	5.8	152
12	Forest cover change patterns in Myanmar (Burma) 1990–2000. Environmental Conservation, 2005, 32, 356-364.	1.3	138
13	A comprehensive analysis of autocorrelation and bias in home range estimation. Ecological Monographs, 2019, 89, e01344.	5.4	127
14	Beyond Migration: Causes and Consequences of Nomadic Animal Movements. Trends in Ecology and Evolution, 2019, 34, 569-581.	8.7	119
15	A guide for studying among-individual behavioral variation from movement data in the wild. Movement Ecology, 2020, 8, 30.	2.8	116
16	Revisitation analysis uncovers spatioâ€temporal patterns in animal movement data . Ecography, 2018, 41, 1801-1811.	4.5	110
17	Trait-Based Assessments of Climate-Change Impacts on Interacting Species. Trends in Ecology and Evolution, 2020, 35, 319-328.	8.7	106
18	Pollination and seed dispersal are the most threatened processes of plant regeneration. Scientific Reports, 2016, 6, 29839.	3.3	98

#	Article	IF	Citations
19	Longest terrestrial migrations and movements around the world. Scientific Reports, 2019, 9, 15333.	3.3	91
20	Don't poke the bear: using tracking data to quantify behavioural syndromes in elusive wildlife. Animal Behaviour, 2019, 147, 91-104.	1.9	90
21	The importance of species diversity for human well-being in Europe. Ecological Economics, 2021, 181, 106917.	5.7	88
22	Experience drives innovation of new migration patterns of whooping cranes in response to global change. Nature Communications, 2016, 7, 12793.	12.8	83
23	Memory, not just perception, plays an important role in terrestrial mammalian migration. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20170449.	2.6	82
24	How far to go? Determinants of migration distance in land mammals. Ecology Letters, 2015, 18, 545-552.	6.4	81
25	Supplementary ungulate feeding affects movement behavior of brown bears. Basic and Applied Ecology, 2017, 24, 68-76.	2.7	76
26	Large frugivorous birds facilitate functional connectivity of fragmented landscapes. Journal of Applied Ecology, 2014, 51, 684-692.	4.0	71
27	Statistical inference for home range overlap. Methods in Ecology and Evolution, 2018, 9, 1679-1691.	5.2	68
28	Human Land-Use Practices Lead to Global Long-Term Increases in Photosynthetic Capacity. Remote Sensing, 2014, 6, 5717-5731.	4.0	65
29	Nonâ€Markovian maximum likelihood estimation of autocorrelated movement processes. Methods in Ecology and Evolution, 2014, 5, 462-472.	5. 2	63
30	Movementâ€mediated community assembly and coexistence. Biological Reviews, 2020, 95, 1073-1096.	10.4	62
31	Mammal population densities at a global scale are higher in humanâ€modified areas. Ecography, 2021, 44, 1-13.	4.5	62
32	Mapping out a future for ungulate migrations. Science, 2021, 372, 566-569.	12.6	61
33	Estimating where and how animals travel: an optimal framework for path reconstruction from autocorrelated tracking data. Ecology, 2016, 97, 576-582.	3.2	60
34	Modeling population viability of captive elephants in Myanmar (Burma): implications for wild populations. Animal Conservation, 2008, 11, 198-205.	2.9	58
35	Integrating individual search and navigation behaviors in mechanistic movement models. Theoretical Ecology, 2011, 4, 341-355.	1.0	58
36	Optimizing the Search for Resources by Sharing Information: Mongolian Gazelles as a Case Study. Physical Review Letters, 2013, 110, 248106.	7.8	58

#	Article	IF	Citations
37	Military training areas facilitate the recolonization of wolves in Germany. Conservation Letters, 2019, 12, e12635.	5.7	58
38	Conserving the World's Finest Grassland Amidst Ambitious National Development. Conservation Biology, 2014, 28, 1736-1739.	4.7	54
39	A framework for modelling range shifts and migrations: asking when, whither, whether and will it return. Journal of Animal Ecology, 2017, 86, 943-959.	2.8	53
40	Effects of body size on estimation of mammalian area requirements. Conservation Biology, 2020, 34, 1017-1028.	4.7	51
41	Biological Earth observation with animal sensors. Trends in Ecology and Evolution, 2022, 37, 293-298.	8.7	49
42	Annual movements of Mongolian gazelles: Nomads in the Eastern Steppe. Journal of Arid Environments, 2010, 74, 1435-1442.	2.4	42
43	A mega-herd of more than 200,000 Mongolian gazelles Procapra gutturosa: a consequence of habitat quality. Oryx, 2009, 43, 149.	1.0	40
44	Conservation needs to integrate knowledge across scales. Nature Ecology and Evolution, 2022, 6, 118-119.	7.8	40
45	First direct, site-wide penguin survey at Deception Island, Antarctica, suggests significant declines in breeding chinstrap penguins. Polar Biology, 2012, 35, 1879.	1.2	39
46	Large birds travel farther in homogeneous environments. Global Ecology and Biogeography, 2019, 28, 576-587.	5.8	39
47	Challenges in the conservation of wideâ€ranging nomadic species. Journal of Applied Ecology, 2019, 56, 1916-1926.	4.0	39
48	Non-material contributions of wildlife to human well-being: a systematic review. Environmental Research Letters, 2020, 15, 093005.	5.2	39
49	Biologging reveals individual variation in behavioural predictability in the wild. Journal of Animal Ecology, 2021, 90, 723-737.	2.8	38
50	Causes, Consequences, and Conservation of Ungulate Migration. Annual Review of Ecology, Evolution, and Systematics, 2021, 52, 453-478.	8.3	36
51	Disentangling social interactions and environmental drivers in multi-individual wildlife tracking data. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170007.	4.0	35
52	Differential survival throughout the full annual cycle of a migratory bird presents a lifeâ€history tradeâ€off. Journal of Animal Ecology, 2021, 90, 1228-1238.	2.8	34
53	Downsizing of animal communities triggers stronger functional than structural decay in seed-dispersal networks. Nature Communications, 2020, 11 , 1582 .	12.8	32
54	Death by a thousand huts? Effects of household presence on density and distribution of Mongolian gazelles. Conservation Letters, 2011, 4, 304-312.	5.7	31

#	Article	IF	CITATIONS
55	The plasticity of ungulate migration in a changing world. Ecology, 2021, 102, e03293.	3.2	31
56	Human activities negatively impact distribution of ungulates in the Mongolian Gobi. Biological Conservation, 2016, 203, 168-175.	4.1	30
57	Leadership, social learning, and the maintenance (or collapse) of migratory populations. Theoretical Ecology, 2012, 5, 253-264.	1.0	27
58	Updated geographic range maps for giraffe, <i>Giraffa</i> spp., throughout subâ€Saharan Africa, and implications of changing distributions for conservation. Mammal Review, 2019, 49, 285-299.	4.8	27
59	Scaleâ€sensitive landscape complementation determines habitat suitability for a territorial generalist. Ecography, 2009, 32, 345-353.	4.5	23
60	Seed perishability determines the caching behaviour of a foodâ€hoarding bird. Journal of Animal Ecology, 2015, 84, 71-78.	2.8	23
61	Nomadism and seasonal range expansion in a large frugivorous bird. Ecography, 2015, 38, 54-62.	4.5	22
62	How topography induces reproductive asynchrony and alters gypsy moth invasion dynamics. Journal of Animal Ecology, 2015, 84, 188-198.	2.8	22
63	Spatiotemporal habitat dynamics of ungulates in unpredictable environments: The khulan (Equus) Tj ETQq $1\ 1\ 0$.784314 r	gBT_{Overlock
64	Natural Language Processing as a tool to evaluate emotions in conservation conflicts. Biological Conservation, 2021, 256, 109030.	4.1	21
65	Birds choose long-term partners years before breeding. Animal Behaviour, 2017, 134, 147-154.	1.9	20
66	Cultural worldviews consistently explain bundles of ecosystem service prioritisation across rural Germany. People and Nature, 2022, 4, 218-230.	3.7	20
67	On the brink of extinction—Habitat selection of addax and dorcas gazelle across the Tin Toumma desert, Niger. Diversity and Distributions, 2017, 23, 581-591.	4.1	19
68	Body size and digestive system shape resource selection by ungulates: A crossâ€ŧaxa test of the forage maturation hypothesis. Ecology Letters, 2021, 24, 2178-2191.	6.4	19
69	Ontogenetic shifts from social to experiential learning drive avian migration timing. Nature Communications, 2021, 12, 7326.	12.8	18
70	Variability in nomadism: environmental gradients modulate the movement behaviors of dryland ungulates. Ecosphere, 2019, 10, e02924.	2.2	17
71	Survival probabilities of adult Mongolian gazelles. Journal of Wildlife Management, 2014, 78, 35-41.	1.8	15
72	A bird pollinator shows positive frequency dependence and constancy of species choice in natural plant communities. Ecology, 2016, 97, 3110-3118.	3.2	13

#	Article	IF	CITATIONS
73	News selection and framing: the media as a stakeholder in human–carnivore coexistence. Environmental Research Letters, 2021, 16, 064075.	5.2	13
74	Stress associated with group living in a long-lived bird. Biology Letters, 2011, 7, 608-610.	2.3	10
75	The importance of early life experience and animal cultures in reintroductions. Conservation Letters, 2019, 12, e12599.	5.7	9
76	Communityâ€wide seed dispersal distances peak at low levels of specialisation in sizeâ€structured networks. Oikos, 2020, 129, 1727-1738.	2.7	9
77	Development of swarm behavior in artificial learning agents that adapt to different foraging environments. PLoS ONE, 2020, 15, e0243628.	2.5	9
78	Rethinking individual relationships with entities of nature. People and Nature, 2022, 4, 596-611.	3.7	9
79	Evaluating expertâ€based habitat suitability information of terrestrial mammals with <scp>GPSâ€</scp> tracking data. Global Ecology and Biogeography, 2022, 31, 1526-1541.	5.8	6
80	Introducing AMV (Animal Movement Visualizer), a visualization tool for animal movement data from satellite collars and radiotelemetry. Ecological Informatics, 2013, 15, 91-95.	5.2	5
81	Resource selection of a nomadic ungulate in a dynamic landscape. PLoS ONE, 2021, 16, e0246809.	2.5	5
82	Avian seed dispersal may be insufficient for plants to track future temperature change on tropical mountains. Global Ecology and Biogeography, 2022, 31, 848-860.	5.8	5
83	Movement Ecology of Reintroduced Migratory Whooping Cranes. , 2019, , 217-238.		4
84	Diurnal timing of nonmigratory movement by birds: the importance of foraging spatial scales. Journal of Avian Biology, 2020, 51, .	1.2	1
85	A gazelle's extraordinary, 18,000â€kmâ€long journey through the steppes of <scp>M</scp> ongolia. Ecology, 2022, 103, e3660.	3.2	1