André R L DamÃ;sio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2061935/publications.pdf Version: 2024-02-01

ANDRÃO PI DAMÃISIO

#	Article	IF	CITATIONS
1	Elevated Glucose Levels Favor SARS-CoV-2 Infection and Monocyte Response through a HIF-1α/Glycolysis-Dependent Axis. Cell Metabolism, 2020, 32, 437-446.e5.	16.2	578
2	Comparative genomics reveals high biological diversity and specific adaptations in the industrially and medically important fungal genus Aspergillus. Genome Biology, 2017, 18, 28.	8.8	417
3	Genomics Review of Holocellulose Deconstruction by Aspergilli. Microbiology and Molecular Biology Reviews, 2014, 78, 588-613.	6.6	99
4	Functional characterization and synergic action of fungal xylanase and arabinofuranosidase for production of xylooligosaccharides. Bioresource Technology, 2012, 119, 293-299.	9.6	86
5	High-yield secretion of multiple client proteins in Aspergillus. Enzyme and Microbial Technology, 2012, 51, 100-106.	3.2	72
6	A novel thermostable xylanase GH10 from Malbranchea pulchella expressed in Aspergillus nidulans with potential applications in biotechnology. Biotechnology for Biofuels, 2014, 7, 115.	6.2	60
7	An integrated approach to obtain xylo-oligosaccharides from sugarcane straw: From lab to pilot scale. Bioresource Technology, 2020, 313, 123637.	9.6	52
8	Heterologous expression of an Aspergillus niveus xylanase GH11 in Aspergillus nidulans and its characterization and application. Process Biochemistry, 2011, 46, 1236-1242.	3.7	50
9	Biomass-to-bio-products application of feruloyl esterase from Aspergillus clavatus. Applied Microbiology and Biotechnology, 2013, 97, 6759-6767.	3.6	49
10	Functional characterization and oligomerization of a recombinant xyloglucan-specific endo-β-1,4-glucanase (GH12) from Aspergillus niveus. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2012, 1824, 461-467.	2.3	45
11	Development of hemicellulolytic enzyme mixtures for plant biomass deconstruction on target biotechnological applications. Applied Microbiology and Biotechnology, 2014, 98, 8513-8525.	3.6	44
12	Xylooligosaccharides production from a sugarcane biomass mixture: Effects of commercial enzyme combinations on bagasse/straw hydrolysis pretreated using different strategies. Food Research International, 2020, 128, 108702.	6.2	42
13	Comparative analysis of three hyperthermophilic GH1 and GH3 family members with industrial potential. New Biotechnology, 2015, 32, 13-20.	4.4	38
14	Effect of hemicellulolytic enzymes to improve sugarcane bagasse saccharification and xylooligosaccharides production. Journal of Molecular Catalysis B: Enzymatic, 2016, 131, 36-46.	1.8	38
15	Purification and Partial Characterization of an Exo-polygalacturonase from Paecilomyces variotii Liquid Cultures. Applied Biochemistry and Biotechnology, 2010, 160, 1496-1507.	2.9	34
16	Xyloglucan breakdown by endo-xyloglucanase family 74 from Aspergillus fumigatus. Applied Microbiology and Biotechnology, 2017, 101, 2893-2903.	3.6	33
17	Properties of a purified thermostable glucoamylase from Aspergillus niveus. Journal of Industrial Microbiology and Biotechnology, 2009, 36, 1439-1446.	3.0	32
18	Assembling a xylanase–lichenase chimera through all-atom molecular dynamics simulations. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2013, 1834, 1492-1500.	2.3	32

#	Article	IF	CITATIONS
19	Cloning, heterologous expression and biochemical characterization of a non-specific endoglucanase family 12 from Aspergillus terreus NIH2624. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2017, 1865, 395-403.	2.3	32
20	Purification and functional properties of a novel glucoamylase activated by manganese and lead produced by Aspergillus japonicus. International Journal of Biological Macromolecules, 2017, 102, 779-788.	7.5	32
21	Genomic and Phenotypic Analysis of COVID-19-Associated Pulmonary Aspergillosis Isolates of Aspergillus fumigatus. Microbiology Spectrum, 2021, 9, e0001021.	3.0	31
22	Development of a chimeric hemicellulase to enhance the xylose production and thermotolerance. Enzyme and Microbial Technology, 2015, 69, 31-37.	3.2	29
23	The Coptotermes gestroi aldo–keto reductase: a multipurpose enzyme for biorefinery applications. Biotechnology for Biofuels, 2017, 10, 4.	6.2	27
24	Xylan-specific carbohydrate-binding module belonging to family 6 enhances the catalytic performance of a GH11 endo-xylanase. New Biotechnology, 2016, 33, 467-472.	4.4	26
25	Enhanced xyloglucan-specific endo-β-1,4-glucanase efficiency in an engineered CBM44-XegA chimera. Applied Microbiology and Biotechnology, 2015, 99, 5095-5107.	3.6	25
26	Mapping N-linked glycosylation of carbohydrate-active enzymes in the secretome of Aspergillus nidulans grown on lignocellulose. Biotechnology for Biofuels, 2016, 9, 168.	6.2	25
27	Characterization of PbPga1, an Antigenic GPI-Protein in the Pathogenic Fungus Paracoccidioides brasiliensis. PLoS ONE, 2012, 7, e44792.	2.5	24
28	Co-cultivation of Aspergillus nidulans Recombinant Strains Produces an Enzymatic Cocktail as Alternative to Alkaline Sugarcane Bagasse Pretreatment. Frontiers in Microbiology, 2016, 7, 583.	3.5	23
29	Optimization of cello-oligosaccharides production by enzymatic hydrolysis of hydrothermally pretreated sugarcane straw using cellulolytic and oxidative enzymes. Biomass and Bioenergy, 2020, 141, 105697.	5.7	23
30	Two structurally discrete GH7-cellobiohydrolases compete for the same cellulosic substrate fiber. Biotechnology for Biofuels, 2012, 5, 21.	6.2	22
31	Purification and biochemical characterization of a novel α-glucosidase from Aspergillus niveus. Antonie Van Leeuwenhoek, 2009, 96, 569-578.	1.7	21
32	Biochemical characterization of an endoxylanase from Pseudozyma brasiliensis sp. nov. strain GHG001 isolated from the intestinal tract of Chrysomelidae larvae associated to sugarcane roots. Process Biochemistry, 2014, 49, 77-83.	3.7	21
33	Structural and functional characterization of a highly secreted α- I -arabinofuranosidase (GH62) from Aspergillus nidulans grown on sugarcane bagasse. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2017, 1865, 1758-1769.	2.3	19
34	The functional properties of a xyloglucanase (GH12) of Aspergillus terreus expressed in Aspergillus nidulans may increase performance of biomass degradation. Applied Microbiology and Biotechnology, 2016, 100, 9133-9144.	3.6	17
35	Purification, partial characterization, and covalent immobilization–stabilization of an extracellular α-amylase from Aspergillus niveus. Folia Microbiologica, 2013, 58, 495-502.	2.3	16
36	On the roles of AA15 lytic polysaccharide monooxygenases derived from the termite Coptotermes gestroi. Journal of Inorganic Biochemistry, 2021, 216, 111316.	3.5	16

#	Article	IF	CITATIONS
37	Biotechnological potential of alternative carbon sources for production of pectinases by Rhizopus microsporus var. rhizopodiformis. Brazilian Archives of Biology and Technology, 2011, 54, 141-148.	0.5	15
38	Understanding the function of conserved variations in the catalytic loops of fungal glycoside hydrolase family 12. Biotechnology and Bioengineering, 2014, 111, 1494-1505.	3.3	15
39	The secretome of two representative lignocellulose-decay basidiomycetes growing on sugarcane bagasse solid-state cultures. Enzyme and Microbial Technology, 2019, 130, 109370.	3.2	15
40	Multi-omics analysis provides insights into lignocellulosic biomass degradation by Laetiporus sulphureus ATCC 52600. Biotechnology for Biofuels, 2021, 14, 96.	6.2	15
41	Functional properties of a manganese-activated exo-polygalacturonase produced by a thermotolerant fungus Aspergillus niveus. Folia Microbiologica, 2013, 58, 615-621.	2.3	14
42	Biochemical Characterization, Thermal Stability, and Partial Sequence of a Novel Exo-Polygalacturonase from the Thermophilic Fungus <i> Rhizomucor pusillus</i> A13.36 Obtained by Submerged Cultivation. BioMed Research International, 2016, 2016, 1-10.	1.9	14
43	Heterologous expression and functional characterization of a GH10 endoxylanase from Aspergillus fumigatus var. niveus with potential biotechnological application. Biotechnology Reports (Amsterdam, Netherlands), 2019, 24, e00382.	4.4	14
44	Aspergillus fumigatus. Trends in Microbiology, 2020, 28, 594-595.	7.7	14
45	Improvement of fungal arabinofuranosidase thermal stability by reversible immobilization. Process Biochemistry, 2012, 47, 2411-2417.	3.7	12
46	Co-immobilization of fungal endo-xylanase and Â-L-arabinofuranosidase in glyoxyl agarose for improved hydrolysis of arabinoxylan. Journal of Biochemistry, 2013, 154, 275-280.	1.7	12
47	The Genome of a Thermo Tolerant, Pathogenic Albino Aspergillus fumigatus. Frontiers in Microbiology, 2018, 9, 1827.	3.5	12
48	The fungal metabolite eugenitin as additive for Aspergillus niveus glucoamylase activation. Journal of Molecular Catalysis B: Enzymatic, 2012, 74, 156-161.	1.8	11
49	α â€(1,4)â€Amylase, but not α ―and β â€(1,3)â€glucanases, may be responsible for the impaired growth and morphogenesis of Paracoccidioides brasiliensis induced by N â€glycosylation inhibition. Yeast, 2014, 31, 1-11.	1.7	11
50	Use of Cassava Peel as Carbon Source for Production of Amylolytic Enzymes by Aspergillus niveus. International Journal of Food Engineering, 2009, 5, .	1.5	10
51	Toxoplasma gondii Chitinase Induces Macrophage Activation. PLoS ONE, 2015, 10, e0144507.	2.5	10
52	Insights into the plant polysaccharide degradation potential of the xylanolytic yeast <i>Pseudozyma brasiliensis</i> . FEMS Yeast Research, 2016, 16, fov117.	2.3	10
53	Protein profile in <i>Aspergillus nidulans</i> recombinant strains overproducing heterologous enzymes. Microbial Biotechnology, 2018, 11, 346-358.	4.2	9
54	Improvement of homologous GH10 xylanase production by deletion of genes with predicted function in the Aspergillus nidulans secretion pathway. Microbial Biotechnology, 2020, 13, 1245-1253.	4.2	9

André R L DamÃisio

#	Article	IF	CITATIONS
55	Tunicamycin inhibition of N-glycosylation of α-glucosidase from Aspergillus niveus: partial influence on biochemical properties. Biotechnology Letters, 2010, 32, 1449-1455.	2.2	8
56	Molecular basis of substrate recognition and specificity revealed in family 12 glycoside hydrolases. Biotechnology and Bioengineering, 2016, 113, 2577-2586.	3.3	8
57	An alkaline active feruloyl-CoA synthetase from soil metagenome as a potential key enzyme for lignin valorization strategies. PLoS ONE, 2019, 14, e0212629.	2.5	7
58	Editorial: CAZymes in Biorefinery: From Genes to Application. Frontiers in Bioengineering and Biotechnology, 2021, 9, 622817.	4.1	7
59	Oxidative cleavage of polysaccharides by a termite-derived <i>superoxide dismutase</i> boosts the degradation of biomass by glycoside hydrolases. Green Chemistry, 2022, 24, 4845-4858.	9.0	7
60	Redesigning N-glycosylation sites in a GH3 β-xylosidase improves the enzymatic efficiency. Biotechnology for Biofuels, 2019, 12, 269.	6.2	6
61	Lysine acetylation as drug target in fungi: an underexplored potential in Aspergillus spp Brazilian Journal of Microbiology, 2020, 51, 673-683.	2.0	6
62	Editorial: Advances in the Regulation and Production of Fungal Enzymes by Transcriptomics, Proteomics and Recombinant Strains Design. Frontiers in Bioengineering and Biotechnology, 2019, 7, 157.	4.1	5
63	A novel mechanism of β-glucosidase stimulation through a monosaccharide binding-induced conformational change. International Journal of Biological Macromolecules, 2021, 166, 1188-1196.	7.5	5
64	Applying biochemical and structural characterization of hydroxycinnamate catabolic enzymes from soil metagenome for lignin valorization strategies. Applied Microbiology and Biotechnology, 2022, 106, 2503-2516.	3.6	5
65	Endo-xylanase GH11 activation by the fungal metabolite eugenitin. Biotechnology Letters, 2012, 34, 1487-1492.	2.2	3
66	Structural model and functional properties of an exo-polygalacturonase from Neosartorya glabra. International Journal of Biological Macromolecules, 2021, 186, 909-918.	7.5	3
67	Immobilization of a recombinant endo-1,5-arabinanase secreted by Aspergillus nidulans strain A773. Journal of Molecular Catalysis B: Enzymatic, 2012, , .	1.8	2
68	Pectinases Produced by Microorganisms. , 2013, , .		2
69	The periplasmic expression and purification of AA15 lytic polysaccharide monooxygenases from insect species in Escherichia coli. Protein Expression and Purification, 2022, 190, 105994.	1.3	2
70	Deletion of AA9 Lytic Polysaccharide Monooxygenases Impacts A. nidulans Secretome and Growth on Lignocellulose. Microbiology Spectrum, 2022, 10, .	3.0	2