## **Geoffrey Hyett**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2061279/publications.pdf

Version: 2024-02-01

| 56<br>papers | 3,767<br>citations | 304743<br>22<br>h-index | 52<br>g-index  |
|--------------|--------------------|-------------------------|----------------|
| 60           | 60                 | 60                      | 5446           |
| all docs     | docs citations     | times ranked            | citing authors |

| #  | ARTICLE ation of factors affecting the stability of compounds formed by isovalent substitution in layered oxychalcogenides, leading to identification of                                                                                                    | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Ba <sub>3</sub> Sc <sub>2</sub> O <sub>5</sub> Cu <sub>2</sub> Se <sub>2</sub> ,  Ba <sub>3</sub> Y <sub>2</sub> O <sub>5</sub> Cu <sub>2</sub> Se <sub>2</sub> ,  Ba <sub>3</sub> Sc <sub>2</sub> O <sub>5</sub> Ag <sub>2</sub> Se <sub>2</sub> and       | 5.5  | 1         |
| 2  | Demonstration of Visible Light-Activated Photocatalytic Self-Cleaning by Thin Films of Perovskite Tantalum and Niobium Oxynitrides. ACS Applied Materials & Samp; Interfaces, 2020, 12, 33603-33612.                                                        | 8.0  | 16        |
| 3  | Computationally Driven Discovery of Layered Quinary Oxychalcogenides: Potential p-Type Transparent Conductors?. Matter, 2020, 3, 759-781.                                                                                                                   | 10.0 | 15        |
| 4  | Photocatalytic, structural and optical properties of mixed anion solid solutions Ba3Sc2â°'xInxO5Cu2S2 and Ba3In2O5Cu2S2â°'ySey. Journal of Materials Chemistry A, 2020, 8, 19887-19897.                                                                     | 10.3 | 8         |
| 5  | Observation of visible light activated photocatalytic degradation of stearic acid on thin films of tantalum oxynitride synthesized by aerosol assisted chemical vapour deposition. Dalton Transactions, 2019, 48, 10619-10627.                              | 3.3  | 11        |
| 6  | Combining single source chemical vapour deposition precursors to explore the phase space of titanium oxynitride thin films. Dalton Transactions, 2018, 47, 10536-10543.                                                                                     | 3.3  | 8         |
| 7  | Phosphinecarboxamide as an unexpected phosphorus precursor in the chemical vapour deposition of zinc phosphide thin films. Dalton Transactions, 2018, 47, 9221-9225.                                                                                        | 3.3  | 6         |
| 8  | Order of magnitude increase in photocatalytic rate for hierarchically porous anatase thin films synthesized from zinc titanate coatings. Dalton Transactions, 2017, 46, 1975-1985.                                                                          | 3.3  | 9         |
| 9  | The Use of Quaternary Ammonium Bromides to Control the Microstructure of Zinc Oxide Films Formed Using Aerosol Assisted Chemical Vapour Deposition. Journal of Nanoscience and Nanotechnology, 2016, 16, 10152-10159.                                       | 0.9  | O         |
| 10 | A Facile Route to Thin Films of Zinc Carbodiimide Using Aerosolâ€assisted CVD. Chemical Vapor Deposition, 2015, 21, 281-287.                                                                                                                                | 1.3  | 8         |
| 11 | Synthesis and characterization of a mixed phase of anatase TiO <sub>2</sub> and TiO <sub>2</sub> (B) by low pressure chemical vapour deposition (LPCVD) for high photocatalytic activity. Journal of Physics: Conference Series, 2014, 522, 012074.         | 0.4  | 9         |
| 12 | Synthesis and characterization of mixed phase anatase TiO <sub>2</sub> and sodium-doped TiO <sub>2</sub> (B) thin films by low pressure chemical vapour deposition (LPCVD). RSC Advances, 2014, 4, 48507-48515.                                             | 3.6  | 47        |
| 13 | A critical analysis of calcium carbonate mesocrystals. Nature Communications, 2014, 5, 4341.                                                                                                                                                                | 12.8 | 122       |
| 14 | The Use of Additives to Control the Morphology of Thin Films Synthesized Using Aerosol Assisted Chemical Vapour Deposition. Physics Procedia, 2013, 46, 21-26.                                                                                              | 1.2  | 3         |
| 15 | Synthesis and energy modelling studies of titanium oxy-nitride films as energy efficient glazing. Solar Energy Materials and Solar Cells, 2013, 118, 149-156.                                                                                               | 6.2  | 11        |
| 16 | High-Throughput Continuous Hydrothermal Synthesis of Nanomaterials (Part II): Unveiling the As-Prepared Ce <sub><i>x</i></sub> Zr <sub><i>y</i></sub> Y <sub><i>z</i></sub> O <sub>2â°Î′</sub> Phase Diagram. ACS Combinatorial Science, 2013, 15, 458-463. | 3.8  | 14        |
| 17 | Photomagnetic studies on spin-crossover solid solutions containing two different metal complexes, [Fe(1-bpp)2]x[M(terpy)2]1â^'x[BF4]2 (M = Ru or Co). Dalton Transactions, 2012, 41, 4896.                                                                  | 3.3  | 22        |
| 18 | The use of cationic surfactants to control the structure of zinc oxide films prepared by chemical vapour deposition. Chemical Communications, 2012, 48, 1490-1492.                                                                                          | 4.1  | 27        |

| #  | Article                                                                                                                                                                                                                                                                                | IF        | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|
| 19 | Competing Magnetic Structures and the Evolution of Copper Ion/Vacancy Ordering with Composition in the Manganite Oxide Chalcogenides Sr <sub>2</sub> MnO <sub>2</sub> Cu <sub>1.5</sub> (S <sub>1â€"<i>x</i></sub> Se <sub><i>x</i></sub> Chemistry of Materials, 2012, 24, 2802-2816. | ∙2'∛sub>. | 14        |
| 20 | The Preparation of Titanium Dioxide Gas Sensors by the Electric Field Assisted Aerosol CVD Reaction of Titanium Isopropoxide in Toluene. Chemical Vapor Deposition, 2012, 18, 102-106.                                                                                                 | 1.3       | 23        |
| 21 | Mechanochemistry: opportunities for new and cleaner synthesis. Chemical Society Reviews, 2012, 41, 413-447.                                                                                                                                                                            | 38.1      | 2,281     |
| 22 | A neutron diffraction study of oxygen and nitrogen ordering in a kinetically stable orthorhombic iron doped titanium oxynitride. Journal of Solid State Chemistry, 2012, 190, 169-173.                                                                                                 | 2.9       | 2         |
| 23 | An investigation into the effect of thickness of titanium dioxide and gold–silver nanoparticle titanium dioxide composite thin-films on photocatalytic activity and photo-induced oxygen production in a sacrificial system. Journal of Materials Chemistry, 2011, 21, 6854.           | 6.7       | 31        |
| 24 | Oxide Nanoparticle Thin Films Created Using Molecular Templates. Journal of Physical Chemistry C, 2011, 115, 13151-13157.                                                                                                                                                              | 3.1       | 1         |
| 25 | Aerosol-Assisted Chemical Vapor Deposition of Transparent Conductive Galliumâ^'Indiumâ^'Oxide Films.<br>Chemistry of Materials, 2011, 23, 1719-1726.                                                                                                                                   | 6.7       | 59        |
| 26 | Aerosolâ€Assisted CVD of Titanium Dioxide Thin Films from Methanolic Solutions of Titanium Tetraisopropoxide; Substrate and Aerosolâ€Selective Deposition of Rutile or Anatase. Chemical Vapor Deposition, 2011, 17, 30-36.                                                            | 1.3       | 35        |
| 27 | Nanoparticulate silver coated-titania thin filmsâ€"Photo-oxidative destruction of stearic acid under different light sources and antimicrobial effects under hospital lighting conditions. Journal of Photochemistry and Photobiology A: Chemistry, 2011, 220, 113-123.                | 3.9       | 69        |
| 28 | Antimicrobial Activity in Thin Films of Pseudobrookiteâ€Structured Titanium Oxynitride under UV Irradiation Observed for <i>i&gt;Escherichia coli</i> i>. Chemical Vapor Deposition, 2010, 16, 19-22.                                                                                  | 1.3       | 16        |
| 29 | Substrateâ€Dependant Ability of Titanium(IV) Oxide Photocatalytic Thin Films Prepared by Thermal CVD to Generate Hydrogen Gas from a Sacrificial Reaction. Chemical Vapor Deposition, 2010, 16, 301-304.                                                                               | 1.3       | 9         |
| 30 | An Investigation into the Optimum Thickness of Titanium Dioxide Thin Films Synthesized by Using Atmospheric Pressure Chemical Vapour Deposition for Use in Photocatalytic Water Oxidation. Chemistry - A European Journal, 2010, 16, 10546-10552.                                      | 3.3       | 18        |
| 31 | MOCVD of crystalline Bi2O3 thin films using a single-source bismuth alkoxide precursor and their use in photodegradation of water. Journal of Materials Chemistry, 2010, 20, 7881.                                                                                                     | 6.7       | 59        |
| 32 | High-Pressure Behavior and Polymorphism of Titanium Oxynitride Phase<br>Ti <sub>2.85</sub> O <sub>4</sub> N. Journal of Physical Chemistry C, 2010, 114, 8546-8551.                                                                                                                    | 3.1       | 8         |
| 33 | The Synthesis of Tantalum (V) Oxide Using Atmospheric Pressure Chemical Vapour Deposition for the Purposes of Photo-activated Water Splitting. ECS Transactions, 2009, 25, 935-942.                                                                                                    | 0.5       | О         |
| 34 | Combinatorial CVD: New Oxy-nitride Photocatalysts. ECS Transactions, 2009, 25, 1239-1250.                                                                                                                                                                                              | 0.5       | 7         |
| 35 | Templated growth of smart nanocomposite thin films: Hybrid aerosol assisted and atmospheric pressure chemical vapour deposition of vanadyl acetylacetonate, auric acid and tetraoctyl ammonium bromide. Polyhedron, 2009, 28, 2233-2239.                                               | 2.2       | 24        |
| 36 | Ultra-violet light activated photocatalysis in thin films of the titanium oxynitride, Ti3â <sup>-</sup> δO4N. Journal of Photochemistry and Photobiology A: Chemistry, 2009, 203, 199-203.                                                                                             | 3.9       | 22        |

| #  | Article                                                                                                                                                                                                                                                                                                    | IF     | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------|
| 37 | The interaction between gold nanoparticles and cationic and anionic dyes: enhanced UV-visible absorption. Physical Chemistry Chemical Physics, 2009, 11, 10513.                                                                                                                                            | 2.8    | 86        |
| 38 | High-Throughput Continuous Hydrothermal Synthesis of an Entire Nanoceramic Phase Diagram. ACS Combinatorial Science, 2009, 11, 829-834.                                                                                                                                                                    | 3.3    | 65        |
| 39 | Combinatorial atmospheric pressure chemical vapour deposition (cAPCVD) of a mixed vanadium oxide and vanadium oxynitride thin film. Journal of Materials Chemistry, 2009, 19, 1399.                                                                                                                        | 6.7    | 45        |
| 40 | An Investigation of Titaniumâ€Vanadium Nitride Phase Space, Conducted Using Combinatorial Atmospheric Pressure CVD. Chemical Vapor Deposition, 2008, 14, 309-312.                                                                                                                                          | 1.3    | 12        |
| 41 | Zinc Oxide Thin Films Grown by Aerosol Assisted CVD. Chemical Vapor Deposition, 2008, 14, 366-372.                                                                                                                                                                                                         | 1.3    | 69        |
| 42 | Chromium oxyselenide solid solutions from the atmospheric pressure chemical vapour deposition of chromyl chloride and diethylselenide. Journal of Materials Chemistry, 2008, 18, 1667.                                                                                                                     | 6.7    | 15        |
| 43 | Ba2Mn2O4Cu0.9S: A layered Oxysulfide with a New Perovskite-Related Manganese Oxide Fragment.<br>Chemistry of Materials, 2008, 20, 559-566.                                                                                                                                                                 | 6.7    | 12        |
| 44 | The effect of oxygen-containing reagents on the crystal morphology and orientation in tungsten oxide thin films deposited via atmospheric pressure chemical vapour deposition (APCVD) on glass substrates. Faraday Discussions, 2007, 136, 329.                                                            | 3.2    | 16        |
| 45 | The Use of Combinatorial Chemical Vapor Deposition in the Synthesis of Ti <sub>3</sub> <sub><sub>&lt;(sub&gt;<sub>)î</sub>O<sub>4</sub>N with 0.06 &lt; î´&lt; 0.25:  A Titanium Oxynitric Phase Isostructural to Anosovite. Journal of the American Chemical Society, 2007, 129, 15541-15548.</sub></sub> | le13.7 | 67        |
| 46 | Doped and un-doped vanadium dioxide thin films prepared by atmospheric pressure chemical vapour deposition from vanadyl acetylacetonate and tungsten hexachloride: the effects of thickness and crystallographic orientation on thermochromic properties. Journal of Materials Chemistry, 2007, 17, 4652.  | 6.7    | 134       |
| 47 | Topotactic Oxidative and Reductive Control of the Structures and Properties of Layered Manganese Oxychalcogenides. Journal of the American Chemical Society, 2007, 129, 11192-11201.                                                                                                                       | 13.7   | 23        |
| 48 | The Effect of Film Thickness on the Suitability of Titanium Oxynitride (TiN <sub><i>x</i></sub> O <sub><i>y</i></sub> , <i>x</i> Below 10 Films as Heat Mirrors a€" Form the Atmospheric Pressure CVD of TiCl <sub>4</sub> and NH <sub>3</sub> . Chemical Vapor Deposition, 2007, 13, 675-679.             | ed by  | 10        |
| 49 | Tungsten Oxide and Tungsten Oxide-Titania Thin Films Prepared by Aerosol-Assisted Deposition – Use of Preformed Solid Nanoparticles. European Journal of Inorganic Chemistry, 2007, 2007, 1415-1421.                                                                                                       | 2.0    | 17        |
| 50 | A combinatorial approach to phase synthesis and characterisation in atmospheric pressure chemical vapour deposition. Surface and Coatings Technology, 2007, 201, 8966-8970.                                                                                                                                | 4.8    | 14        |
| 51 | Aerosol assisted chemical vapour deposition of MoO3 and MoO2 thin films on glass from molybdenum polyoxometallate precursors; thermophoresis and gas phase nanoparticle formation. Journal of Materials Chemistry, 2006, 16, 3575.                                                                         | 6.7    | 55        |
| 52 | X-ray Diffraction Area Mapping of Preferred Orientation and Phase Change in TiO2Thin Films Deposited by Chemical Vapor Deposition. Journal of the American Chemical Society, 2006, 128, 12147-12155.                                                                                                       | 13.7   | 65        |
| 53 | Sodium Intercalation into the n = 2 Ruddlesden—Popper Type Host Y2Ti2O5S2: Synthesis, Structure, and Properties of α-NaxY2Ti2O5S2 (0 < x ≠1) ChemInform, 2004, 35, no.                                                                                                                                     | 0.0    | O         |
|    |                                                                                                                                                                                                                                                                                                            |        |           |

Electronically Driven Structural Distortions in Lithium Intercalates of the n = 2 Ruddlesdenâ€"Popper-Type Host Y2Ti2O5S2: Synthesis, Structure, and Properties of LixY2Ti2O5S2 (0 < x <) Tj ETQqQ 0 0 rg BT /Overloc

# Article IF Citations

Electronically Driven Structural Distortions in Lithium Intercalates of the n = 2

Ruddlesdenâ 'Popper-Type Host Y2Ti2O5S2:  Synthesis, Structure, and Properties of LixY2Ti2O5S2 (0 < x <) Tj £3.0 q1 1 9.0 8431

Sodium Intercalation into the n = 2 Ruddlesdenâ^'Popper Type Host Y2Ti2O5S2:  Synthesis, Structure, and Properties of α-NaxY2Ti2O5S2 (0 < x ≠1). Chemistry of Materials, 2003, 15, 5065-5072.