
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2060499/publications.pdf Version: 2024-02-01

Ι ι Να Ομανι

#	Article	IF	CITATIONS
1	Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent. Nature, 2018, 562, 245-248.	13.7	2,589
2	Efficient and stable solution-processed planar perovskite solar cells via contact passivation. Science, 2017, 355, 722-726.	6.0	2,019
3	Perovskite energy funnels for efficient light-emitting diodes. Nature Nanotechnology, 2016, 11, 872-877.	15.6	1,868
4	Ligand-Stabilized Reduced-Dimensionality Perovskites. Journal of the American Chemical Society, 2016, 138, 2649-2655.	6.6	1,157
5	Perovskite–fullerene hybrid materials suppress hysteresis in planar diodes. Nature Communications, 2015, 6, 7081.	5.8	948
6	Highly Efficient Perovskiteâ€Quantumâ€Dot Lightâ€Emitting Diodes by Surface Engineering. Advanced Materials, 2016, 28, 8718-8725.	11.1	917
7	Highly Oriented Low-Dimensional Tin Halide Perovskites with Enhanced Stability and Photovoltaic Performance. Journal of the American Chemical Society, 2017, 139, 6693-6699.	6.6	723
8	State of the Art and Prospects for Halide Perovskite Nanocrystals. ACS Nano, 2021, 15, 10775-10981.	7.3	705
9	Perovskites for Next-Generation Optical Sources. Chemical Reviews, 2019, 119, 7444-7477.	23.0	640
10	Color-stable highly luminescent sky-blue perovskite light-emitting diodes. Nature Communications, 2018, 9, 3541.	5.8	536
11	Perovskites for Light Emission. Advanced Materials, 2018, 30, e1801996.	11.1	417
12	Tailoring the Energy Landscape in Quasi-2D Halide Perovskites Enables Efficient Green-Light Emission. Nano Letters, 2017, 17, 3701-3709.	4.5	409
13	Spin control in reduced-dimensional chiral perovskites. Nature Photonics, 2018, 12, 528-533.	15.6	371
14	Plasmonic Solar Cells: From Rational Design to Mechanism Overview. Chemical Reviews, 2016, 116, 14982-15034.	23.0	333
15	Highly Emissive Green Perovskite Nanocrystals in a Solid State Crystalline Matrix. Advanced Materials, 2017, 29, 1605945.	11.1	309
16	Perovskite seeding growth of formamidinium-lead-iodide-based perovskites for efficient and stable solar cells. Nature Communications, 2018, 9, 1607.	5.8	309
17	Bright colloidal quantum dot light-emitting diodes enabled by efficient chlorination. Nature Photonics, 2018, 12, 159-164.	15.6	303
18	2D matrix engineering for homogeneous quantum dot coupling in photovoltaic solids. Nature Nanotechnology, 2018, 13, 456-462.	15.6	252

#	Article	IF	CITATIONS
19	Pure Cubicâ€Phase Hybrid Iodobismuthates AgBi ₂ I ₇ for Thinâ€Film Photovoltaics. Angewandte Chemie - International Edition, 2016, 55, 9586-9590.	7.2	201
20	2D Metal Oxyhalideâ€Derived Catalysts for Efficient CO ₂ Electroreduction. Advanced Materials, 2018, 30, e1802858.	11.1	200
21	Highly Efficient Visible Colloidal Lead-Halide Perovskite Nanocrystal Light-Emitting Diodes. Nano Letters, 2018, 18, 3157-3164.	4.5	199
22	Nanowires for Photonics. Chemical Reviews, 2019, 119, 9153-9169.	23.0	173
23	Edge stabilization in reduced-dimensional perovskites. Nature Communications, 2020, 11, 170.	5.8	147
24	Efficient near-infrared light-emitting diodes based on quantum dots in layered perovskite. Nature Photonics, 2020, 14, 227-233.	15.6	136
25	Ultrafast narrowband exciton routing within layered perovskite nanoplatelets enables low-loss luminescent solar concentrators. Nature Energy, 2019, 4, 197-205.	19.8	132
26	Chloride Passivation of ZnO Electrodes Improves Charge Extraction in Colloidal Quantum Dot Photovoltaics. Advanced Materials, 2017, 29, 1702350.	11.1	126
27	Lead-free Cesium Europium Halide Perovskite Nanocrystals. Nano Letters, 2020, 20, 3734-3739.	4.5	103
28	Structural and spectral dynamics of single-crystalline Ruddlesden-Popper phase halide perovskite blue light-emitting diodes. Science Advances, 2020, 6, eaay4045.	4.7	88
29	Quantitative imaging of anion exchange kinetics in halide perovskites. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 12648-12653.	3.3	84
30	A two-step route to planar perovskite cells exhibiting reduced hysteresis. Applied Physics Letters, 2015, 106, .	1.5	80
31	Amideâ€Catalyzed Phaseâ€Selective Crystallization Reduces Defect Density in Wideâ€Bandgap Perovskites. Advanced Materials, 2018, 30, e1706275.	11.1	80
32	Spectrally Resolved Ultrafast Exciton Transfer in Mixed Perovskite Quantum Wells. Journal of Physical Chemistry Letters, 2019, 10, 419-426.	2.1	74
33	Lead-free halide double perovskites: Toward stable and sustainable optoelectronic devices. Materials Today, 2021, 49, 123-144.	8.3	57
34	Soft-template-carbonization route to highly textured mesoporous carbon–TiO ₂ inverse opals for efficient photocatalytic and photoelectrochemical applications. Physical Chemistry Chemical Physics, 2014, 16, 9023-9030.	1.3	56
35	Anchored Ligands Facilitate Efficient B-Site Doping in Metal Halide Perovskites. Journal of the American Chemical Society, 2019, 141, 8296-8305.	6.6	53
36	Enhanced photocatalytic activity of C, F-codoped TiO2 loaded with AgCl. Journal of Alloys and Compounds, 2013, 560, 20-26.	2.8	51

#	Article	IF	CITATIONS
37	Pressure-induced semiconductor-to-metal phase transition of a charge-ordered indium halide perovskite. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 23404-23409.	3.3	45
38	Self-powered reduced-dimensionality perovskite photodiodes with controlled crystalline phase and improved stability. Nano Energy, 2019, 57, 761-770.	8.2	43
39	Pure Cubicâ€Phase Hybrid Iodobismuthates AgBi ₂ I ₇ for Thinâ€Film Photovoltaics. Angewandte Chemie, 2016, 128, 9738-9742.	1.6	42
40	Biexciton Resonances Reveal Exciton Localization in Stacked Perovskite Quantum Wells. Journal of Physical Chemistry Letters, 2017, 8, 3895-3901.	2.1	41
41	Configuration-controlled Au nanocluster arrays on inverse micelle nano-patterns: versatile platforms for SERS and SPR sensors. Nanoscale, 2013, 5, 12261.	2.8	40
42	Perovskite–Gold Nanorod Hybrid Photodetector with High Responsivity and Low Driving Voltage. Advanced Optical Materials, 2018, 6, 1701397.	3.6	36
43	Copper(I)-Based Highly Emissive All-Inorganic Rare-Earth Halide Clusters. Matter, 2019, 1, 180-191.	5.0	35
44	Vibrational relaxation dynamics in layered perovskite quantum wells. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	33
45	Towards efficient and stable perovskite solar cells employing non-hygroscopic F4-TCNQ doped TFB as the hole-transporting material. Nanoscale, 2019, 11, 19586-19594.	2.8	26
46	Polyethylenimine ethoxylated interlayer-mediated ZnO interfacial engineering for high-performance and low-temperature processed flexible perovskite solar cells: A simple and viable route for one-step processed CH3NH3PbI3. Journal of Power Sources, 2019, 438, 226956.	4.0	22
47	Mesoporous Carbonâ€īiO ₂ Beads with Nanotextured Surfaces as Photoanodes in Dyeâ€Sensitized Solar Cells. ChemSusChem, 2014, 7, 2590-2596.	3.6	20
48	Layer-by-Layer Self-Assembled Graphene Multilayers as Pt-Free Alternative Counter Electrodes in Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 11488-11498.	4.0	20
49	Infrared Cavity-Enhanced Colloidal Quantum Dot Photovoltaics Employing Asymmetric Multilayer Electrodes. ACS Energy Letters, 2018, 3, 2908-2913.	8.8	20
50	Graphene Oxide Shells on Plasmonic Nanostructures Lead to High-Performance Photovoltaics: A Model Study Based on Dye-Sensitized Solar Cells. ACS Energy Letters, 2017, 2, 117-123.	8.8	17
51	Lattice Dynamics and Optoelectronic Properties of Vacancy-Ordered Double Perovskite Cs ₂ TeX ₆ (X = Cl [–] , Br [–] , I [–]) Single Crystals. Journal of Physical Chemistry C, 2021, 125, 25126-25139.	1.5	17
52	A New Perspective and Design Principle for Halide Perovskites: Ionic Octahedron Network (ION). Nano Letters, 2021, 21, 5415-5421.	4.5	9
53	Excitonic Creation of Highly Luminescent Defects In Situ in Working Organic Lightâ€Emitting Diodes. Advanced Optical Materials, 2018, 6, 1700856.	3.6	6
54	A Softâ€Templateâ€Conversion Route to Fabricate Nanopatterned Hybrid Pt/Carbon for Potential Use in Counter Electrodes of Dyeâ€Sensitized Solar Cells. Macromolecular Rapid Communications, 2013, 34, 1487-1492.	2.0	5

#	Article	IF	CITATIONS
55	Photonics for enhanced perovskite optoelectronics. Nanophotonics, 2021, 10, 1941-1942.	2.9	3
56	51.3: Invited Paper: Perovskite Light Emitters via Dimensional and Structural Control. Digest of Technical Papers SID International Symposium, 2019, 50, 568-568.	0.1	0
57	Controll over the Au@Ag Core-shell Nanoparticle 2D Patterns via Diblock Copolymer Inverse Micelle Templates and Investigation of the Surface Plasmon Based Optical Property. Journal of the Korean Chemical Society, 2013, 57, 618-624.	0.2	0
58	Horizons Community Board collection: optical and photonic materials. Nanoscale Horizons, 2021, 6, 936-938.	4.1	0