Iris Z Jaffe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2059863/publications.pdf

Version: 2024-02-01

		117625	114465
84	4,142	34	63
papers	citations	h-index	g-index
85	85	85	3889
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Angiotensin II and Aldosterone Regulate Gene Transcription Via Functional Mineralocortocoid Receptors in Human Coronary Artery Smooth Muscle Cells. Circulation Research, 2005, 96, 643-650.	4.5	313
2	Direct regulation of blood pressure by smooth muscle cell mineralocorticoid receptors. Nature Medicine, 2012, 18, 1429-1433.	30.7	286
3	Functional Mineralocorticoid Receptors in Human Vascular Endothelial Cells Regulate Intercellular Adhesion Molecule-1 Expression and Promote Leukocyte Adhesion. Circulation Research, 2008, 102, 1359-1367.	4.5	237
4	Sex as a Biological Variable in Atherosclerosis. Circulation Research, 2020, 126, 1297-1319.	4.5	190
5	Sex differences in mechanisms of arterial stiffness. British Journal of Pharmacology, 2019, 176, 4208-4225.	5.4	163
6	Mineralocorticoid receptors in vascular function and disease. Molecular and Cellular Endocrinology, 2012, 350, 256-265.	3.2	142
7	Endothelial Mineralocorticoid Receptor Mediates Diet-Induced Aortic Stiffness in Females. Circulation Research, 2016, 118, 935-943.	4.5	142
8	Left Ventricular Unloading BeforeÂReperfusion Promotes FunctionalÂRecovery After AcuteÂMyocardialÂInfarction. Journal of the American College of Cardiology, 2018, 72, 501-514.	2.8	138
9	Endothelial Mineralocorticoid Receptor Deletion Prevents Diet-Induced Cardiac Diastolic Dysfunction in Females. Hypertension, 2015, 66, 1159-1167.	2.7	111
10	Mineralocorticoid Receptor Activation Promotes Vascular Cell Calcification. Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, 27, 799-805.	2.4	107
11	Intercellular Adhesion Molecule 1 Regulates Left Ventricular Leukocyte Infiltration, Cardiac Remodeling, and Function in Pressure Overload–Induced Heart Failure. Journal of the American Heart Association, 2016, 5, e003126.	3.7	105
12	Aldosterone Promotes Vascular Remodeling by Direct Effects on Smooth Muscle Cell Mineralocorticoid Receptors. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 355-364.	2.4	104
13	Essential role of ICAM-1 in aldosterone-induced atherosclerosis. International Journal of Cardiology, 2017, 232, 233-242.	1.7	104
14	Aldosterone Increases Early Atherosclerosis and Promotes Plaque Inflammation Through a Placental Growth Factorâ€Dependent Mechanism. Journal of the American Heart Association, 2013, 2, e000018.	3.7	102
15	Smooth Muscle Cell Mineralocorticoid Receptors Are Mandatory for Aldosterone–Salt to Induce Vascular Stiffness. Hypertension, 2014, 63, 520-526.	2.7	97
16	Mineralocorticoid Receptor Antagonism Treats Obesity-Associated Cardiac Diastolic Dysfunction. Hypertension, 2015, 65, 1082-1088.	2.7	84
17	Endothelial Mineralocorticoid Receptors Differentially Contribute to Coronary and Mesenteric Vascular Function Without Modulating Blood Pressure. Hypertension, 2015, 66, 988-997.	2.7	84
18	Aldosterone Regulates Vascular Gene Transcription via Oxidative Stress–Dependent and –Independent Pathways. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 1871-1880.	2.4	78

#	Article	IF	Citations
19	Estrogen Receptor Inhibits Mineralocorticoid Receptor Transcriptional Regulatory Function. Endocrinology, 2014, 155, 4461-4472.	2.8	76
20	Vascular mineralocorticoid receptor regulates microRNA-155 to promote vasoconstriction and rising blood pressure with aging. JCI Insight, 2016, 1, e88942.	5.0	76
21	Exposure to Experimental Preeclampsia in Mice Enhances the Vascular Response to Future Injury. Hypertension, 2015, 65, 863-870.	2.7	73
22	Mineralocorticoid receptors in immune cells: Emerging role in cardiovascular disease. Steroids, 2014, 91, 38-45.	1.8	72
23	30 YEARS OF THE MINERALOCORTICOID RECEPTOR: The role of the mineralocorticoid receptor in the vasculature. Journal of Endocrinology, 2017, 234, T67-T82.	2.6	72
24	Placental growth factor mediates aldosterone-dependent vascular injury in mice. Journal of Clinical Investigation, 2010, 120, 3891-3900.	8.2	67
25	Sexâ€Specific Mechanisms of Resistance Vessel Endothelial Dysfunction Induced by Cardiometabolic Risk Factors. Journal of the American Heart Association, 2018, 7, .	3.7	64
26	Smooth Muscle Cell–Mineralocorticoid Receptor as a Mediator of Cardiovascular Stiffness With Aging. Hypertension, 2018, 71, 609-621.	2.7	60
27	Biological Sex Modulates the Adrenal and Blood Pressure Responses to Angiotensin II. Hypertension, 2018, 71, 1083-1090.	2.7	58
28	Role of Aldosterone and Mineralocorticoid Receptor in Cardiovascular Aging. Frontiers in Endocrinology, 2019, 10, 584.	3.5	53
29	Deletion of mineralocorticoid receptors in smooth muscle cells blunts renal vascular resistance following acute cyclosporine administration. Kidney International, 2016, 89, 354-362.	5.2	52
30	Effect of Spironolactone on Myocardial Fibrosis and Other Clinical Variables in Patients with Hypertrophic Cardiomyopathy. American Journal of Medicine, 2018, 131, 837-841.	1.5	50
31	Endothelial Mineralocorticoid Receptors Contribute to Vascular Inflammation in Atherosclerosis in a Sex-Specific Manner. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 1588-1601.	2.4	47
32	Progesterone Predisposes Females to Obesity-Associated Leptin-Mediated Endothelial Dysfunction via Upregulating Endothelial MR (Mineralocorticoid Receptor) Expression. Hypertension, 2019, 74, 678-686.	2.7	45
33	Diet-Induced Obesity Promotes Kidney Endothelial Stiffening and Fibrosis Dependent on the Endothelial Mineralocorticoid Receptor. Hypertension, 2019, 73, 849-858.	2.7	41
34	Smooth muscle cell mineralocorticoid receptors: role in vascular function and contribution to cardiovascular disease. Pflugers Archiv European Journal of Physiology, 2013, 465, 1661-1670.	2.8	40
35	Endothelial Mineralocorticoid Receptor Mediates Parenchymal Arteriole and Posterior Cerebral Artery Remodeling During Angiotensin Il–Induced Hypertension. Hypertension, 2017, 70, 1113-1121.	2.7	36
36	Direct Role for Smooth Muscle Cell Mineralocorticoid Receptors in Vascular Remodeling: Novel Mechanisms and Clinical Implications. Current Hypertension Reports, 2014, 16, 427.	3.5	35

#	Article	IF	Citations
37	Mineralocorticoid Receptors in the Pathophysiology of Vascular Inflammation and Atherosclerosis. Frontiers in Endocrinology, 2015, 6, 153.	3.5	34
38	Sex differences in the time course and mechanisms of vascular and cardiac aging in mice: role of the smooth muscle cell mineralocorticoid receptor. American Journal of Physiology - Heart and Circulatory Physiology, 2021, 320, H169-H180.	3.2	34
39	Aldosterone and Vascular Mineralocorticoid Receptors. Hypertension, 2014, 63, 632-637.	2.7	33
40	The endothelial mineralocorticoid receptor. Current Opinion in Nephrology and Hypertension, 2016, $26,1.$	2.0	33
41	Spironolactone Prevents Endothelial Nitric Oxide Synthase Uncoupling and Vascular Dysfunction Induced by \hat{l}^2 -Adrenergic Overstimulation. Hypertension, 2016, 68, 726-735.	2.7	29
42	VEGF Receptor Inhibitor-Induced Hypertension: Emerging Mechanisms and Clinical Implications. Current Oncology Reports, 2022, 24, 463-474.	4.0	28
43	The endothelial mineralocorticoid receptor: Contributions to sex differences in cardiovascular disease., 2019, 203, 107387.		26
44	Endothelial mineralocorticoid receptor contributes to systolic dysfunction induced by pressure overload without modulating cardiac hypertrophy or inflammation. Physiological Reports, 2017, 5, e13313.	1.7	25
45	Mineralocorticoid Receptors in Vascular Disease: Connecting Molecular Pathways to Clinical Implications. Current Atherosclerosis Reports, 2013, 15, 340.	4.8	23
46	Vascular Mineralocorticoid Receptor: Evolutionary Mediator of Wound Healing Turned Harmful by Our Modern Lifestyle. American Journal of Hypertension, 2019, 32, 123-134.	2.0	23
47	Direct contribution of vascular mineralocorticoid receptors to blood pressure regulation. Clinical and Experimental Pharmacology and Physiology, 2013, 40, 902-909.	1.9	22
48	Circulating multimarker profile of patients with symptomatic heart failure supports enhanced fibrotic degradation and decreased angiogenesis. Biomarkers, 2016, 21, 91-97.	1.9	21
49	Molecular mechanisms for vascular complications of targeted cancer therapies. Clinical Science, 2016, 130, 1763-1779.	4.3	18
50	No Significant Role for Smooth Muscle Cell Mineralocorticoid Receptors in Atherosclerosis in the Apolipoprotein-E Knockout Mouse Model. Frontiers in Cardiovascular Medicine, 2018, 5, 81.	2.4	18
51	Gene expression in term placentas is regulated more by spinal or epidural anesthesia than by late-onset preeclampsia or gestational diabetes mellitus. Scientific Reports, 2016, 6, 29715.	3.3	15
52	Mineralocorticoid Receptor in Smooth Muscle Contributes to Pressure Overload–Induced Heart Failure. Circulation: Heart Failure, 2021, 14, e007279.	3.9	15
53	Unliganded estrogen receptor alpha regulates vascular cell function and gene expression. Molecular and Cellular Endocrinology, 2017, 442, 12-23.	3.2	13
54	Mineralocorticoid and Estrogen Receptors in Endothelial Cells Coordinately Regulate Microvascular Function in Obese Female Mice. Hypertension, 2021, 77, 2117-2126.	2.7	13

#	Article	IF	CITATIONS
55	Acute effect of mineralocorticoid receptor antagonism on vascular function in healthy older adults. Experimental Gerontology, 2016, 73, 86-94.	2.8	12
56	A phosphoproteomic signature in endothelial cells predicts vascular toxicity of tyrosine kinase inhibitors used in CML. Blood Advances, 2018, 2, 1680-1684.	5.2	11
57	PKCδ Mediates Mineralocorticoid Receptor Activation by Angiotensin II to Modulate Smooth Muscle Cell Function. Endocrinology, 2019, 160, 2101-2114.	2.8	11
58	Selective deletion of endothelial mineralocorticoid receptor protects from vascular dysfunction in sodium-restricted female mice. Biology of Sex Differences, 2020, 11, 64.	4.1	11
59	Smooth muscle mineralocorticoid receptor as an epigenetic regulator of vascular ageing. Cardiovascular Research, 2023, 118, 3386-3400.	3.8	10
60	Comparative Transcriptomics of ExÂVivo, Patient-Derived Endothelial Cells Reveals Novel Pathways Associated With TypeÂ2ÂDiabetes Mellitus. JACC Basic To Translational Science, 2019, 4, 567-574.	4.1	9
61	Sacubitril/Valsartan Improves Left Ventricular Function in Chronic Pressure Overload Independent of Intact Cyclic Guanosine Monophosphate-dependent Protein Kinase I Alpha Signaling. Journal of Cardiac Failure, 2020, 26, 769-775.	1.7	9
62	Myeloid Mineralocorticoid Receptor Transcriptionally Regulates P-Selectin Glycoprotein Ligand-1 and Promotes Monocyte Trafficking and Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 2740-2755.	2.4	9
63	Vascular cellâ€specific roles of mineralocorticoid receptors in pulmonary hypertension. Pulmonary Circulation, 2021, 11, 1-13.	1.7	8
64	Midgestation Leptin Infusion Induces Characteristics of Clinical Preeclampsia in Mice, Which Is Ablated by Endothelial Mineralocorticoid Receptor Deletion. Hypertension, 2022, 79, 1536-1547.	2.7	8
65	Short-Term Administration of Serelaxin Produces Predominantly Vascular Benefits in the Angiotensin II/L-NAME Chronic Heart Failure Model. JACC Basic To Translational Science, 2017, 2, 285-296.	4.1	5
66	Mineralocorticoid receptor blockade normalizes coronary resistance in obese swine independent of functional alterations in Kv channels. Basic Research in Cardiology, 2021, 116, 35.	5.9	5
67	Systems Approach to Integrating Preclinical Apolipoprotein E-Knockout Investigations Reveals Novel Etiologic Pathways and Master Atherosclerosis Network in Humans. Arteriosclerosis, Thrombosis, and Vascular Biology, 2022, 42, 35-48.	2.4	4
68	MLK3 mediates impact of PKG1 $\hat{l}\pm$ on cardiac function and controls blood pressure through separate mechanisms. JCI Insight, 2021, 6, .	5.0	3
69	Response by Good et al to Letter Regarding Article, "Pannexin-1 Channels as an Unexpected New Target of the Antihypertensive Drug Spironolactone― Circulation Research, 2018, 122, e88-e89.	4.5	0
70	Mineralocorticoid Receptor Blockade Normalizes Coronary Resistance in Obese Swine Independent of Functional Alterations in K ν Channels. FASEB Journal, 2021, 35, .	0.5	0
71	The Mineralocorticoid Receptor in Myeloid Cells Promotes Vascular Inflammation and Atherosclerosis via Transcriptional Regulation of Selplg. FASEB Journal, 2021, 35, .	0.5	0
72	Endothelial mineralocorticoid receptor deletion ablates leptinâ€induced cardiovascular and fetal growth preeclampsia characteristics in pregnant mice. FASEB Journal, 2021, 35, .	0.5	0

#	Article	IF	CITATIONS
73	Abstract 03: Ablation Of Endothelial Dysfunction Improves Blood Pressure And Fetal Growth Restriction In A Mouse Model Of Preeclampsia-like Hyperleptinemia. Hypertension, 2021, 78, .	2.7	O
74	Sex differences in the role of the smooth muscle cell mineralocorticoid receptor in cardiovascular aging. FASEB Journal, 2018, 32, 715.8.	0.5	0
75	Deletion of Smooth Muscle, but not Endothelial, Mineralocorticoid Receptors Prevents Obesityâ€Associated Coronary Vascular Dysfunction in Females. FASEB Journal, 2018, 32, 579.8.	0.5	O
76	Sex Differences in the Role of the Endothelial Mineralocorticoid Receptor in Vascular Inflammation in Atherosclerosis. FASEB Journal, 2019, 33, 832.2.	0.5	0
77	Prevention of Obesityâ€Associated Coronary and Cardiac Diastolic Dysfunction by Deletion of Smooth Muscle Cell Mineralocorticoid Receptor in Females. FASEB Journal, 2019, 33, lb508.	0.5	0
78	Abstract MP14: Endothelial Mineralocorticoid Receptor Deletion Abrogates Leptin-induced Endothelial Dysfunction And Fetal Growth Restriction In Pregnant Mice. Hypertension, 2020, 76, .	2.7	0
79	HIF1α and NFκB Regulate Mineralocorticoid Receptor Gene Expression in Aging Human Vascular Smooth Muscle Cells. FASEB Journal, 2022, 36, .	0.5	O
80	sFlt1â€Induced Preeclampsia Enhances Cardiovascular Response to Post Partum Hypertensive Stimuli via Smooth Muscle Mineralocorticoid Receptor. FASEB Journal, 2022, 36, .	0.5	0
81	Endothelial Mineralocorticoid Receptors Constrain Arteriogenesis and Perfusion Recovery Following Chronic Arterial Ligation in a Sexâ€specific Manner. FASEB Journal, 2022, 36, .	0.5	0
82	Abstract 8929: Mineralocorticoid Receptor as an Epigenetic Regulator of Vascular Aging. Circulation, 2021, 144, .	1.6	0
83	Abstract 13322: Development of the Preclinical Science Integration and Translation (PRESCIANT) Method and Application to the Apolipoprotein E Knockout Mouse Atherosclerosis Model. Circulation, 2021, 144, .	1.6	0
84	Histone Acetyltransferases in Smooth Muscle Cell Phenotype Switching: Redundant No Longer. Circulation, 2022, 145, 1738-1740.	1.6	0