
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2058384/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Visible light sensitive photoinitiating systems: Recent progress in cationic and radical photopolymerization reactions under soft conditions. Progress in Polymer Science, 2015, 41, 32-66.	24.7	463
2	Photopolymerization upon LEDs: new photoinitiating systems and strategies. Polymer Chemistry, 2015, 6, 3895-3912.	3.9	346
3	Metal-Free, Visible Light-Photocatalyzed Synthesis of Benzo[<i>b</i>]phosphole Oxides: Synthetic and Mechanistic Investigations. Journal of the American Chemical Society, 2016, 138, 7436-7441.	13.7	273
4	Polarity Reversal Catalysis in Radical Reductions of Halides by N-Heterocyclic Carbene Boranes. Journal of the American Chemical Society, 2012, 134, 5669-5674.	13.7	200
5	Toward Nitroxide-Mediated Photopolymerization. Macromolecules, 2010, 43, 2204-2212.	4.8	180
6	Efficient dual radical/cationic photoinitiator under visible light: a new concept. Polymer Chemistry, 2011, 2, 1986.	3.9	174
7	Structure Design of Naphthalimide Derivatives: Toward Versatile Photoinitiators for Near-UV/Visible LEDs, 3D Printing, and Water-Soluble Photoinitiating Systems. Macromolecules, 2015, 48, 2054-2063.	4.8	172
8	Nâ^'H and α(Câ^'H) Bond Dissociation Enthalpies of Aliphatic Amines. Journal of the American Chemical Society, 2002, 124, 9613-9621.	13.7	168
9	Subtle Ligand Effects in Oxidative Photocatalysis with Iridium Complexes: Application to Photopolymerization. Chemistry - A European Journal, 2011, 17, 15027-15031.	3.3	162
10	Green Chemistry: Sunlight-Induced Cationic Polymerization of Renewable Epoxy Monomers Under Air. Macromolecules, 2010, 43, 1364-1370.	4.8	160
11	Photopolymerization Reactions: On the Way to a Green and Sustainable Chemistry. Applied Sciences (Switzerland), 2013, 3, 490-514.	2.5	158
12	High Performance Near-Infrared (NIR) Photoinitiating Systems Operating under Low Light Intensity and in the Presence of Oxygen. Macromolecules, 2018, 51, 1314-1324.	4.8	152
13	Copper Complexes in Radical Photoinitiating Systems: Applications to Free Radical and Cationic Polymerization upon Visible LEDs. Macromolecules, 2014, 47, 3837-3844.	4.8	150
14	Photopolymerization processes of thick films and in shadow areas: a review for the access to composites. Polymer Chemistry, 2017, 8, 7088-7101.	3.9	145
15	Polyaromatic Structures as Organo-Photoinitiator Catalysts for Efficient Visible Light Induced Dual Radical/Cationic Photopolymerization and Interpenetrated Polymer Networks Synthesis. Macromolecules, 2012, 45, 4454-4460.	4.8	144
16	Iridium Photocatalysts in Free Radical Photopolymerization under Visible Lights. ACS Macro Letters, 2012, 1, 286-290.	4.8	136
17	Photocatalysts in Polymerization Reactions. ChemCatChem, 2016, 8, 1617-1631.	3.7	136
18	Photopolymerization of <i>N</i> -Vinylcarbazole Using Visible-Light Harvesting Iridium Complexes as Photoinitiators. Macromolecules, 2012, 45, 4134-4141.	4.8	133

#	Article	IF	CITATIONS
19	<i>N</i> -Vinylcarbazole: An Additive for Free Radical Promoted Cationic Polymerization upon Visible Light. ACS Macro Letters, 2012, 1, 802-806.	4.8	129
20	Tunable Organophotocatalysts for Polymerization Reactions Under Visible Lights Macromolecules, 2012, 45, 1746-1752.	4.8	128
21	N-Heterocyclic Carbenesâ^'Borane Complexes: A New Class of Initiators for Radical Photopolymerization. Macromolecules, 2010, 43, 2261-2267.	4.8	123
22	Carbazole Scaffold Based Photoinitiator/Photoredox Catalysts: Toward New High Performance Photoinitiating Systems and Application in LED Projector 3D Printing Resins. Macromolecules, 2017, 50, 2747-2758.	4.8	121
23	Dyes as Photoinitiators or Photosensitizers of Polymerization Reactions. Materials, 2010, 3, 5130-5142.	2.9	120
24	Naphthalimide based methacrylated photoinitiators in radical and cationic photopolymerization under visible light. Polymer Chemistry, 2013, 4, 5440.	3.9	120
25	Freeâ€radicalâ€promoted cationic photopolymerization under visible light in aerated media: New and highly efficient silaneâ€containing initiating systems. Journal of Polymer Science Part A, 2008, 46, 2008-2014.	2.3	117
26	Silanes as New Highly Efficient Co-initiators for Radical Polymerization in Aerated Media. Macromolecules, 2008, 41, 2003-2010.	4.8	116
27	New Push–Pull Dyes Derived from Michler's Ketone For Polymerization Reactions Upon Visible Lights Macromolecules, 2013, 46, 3761-3770.	4.8	112
28	Radical photoinitiation with LEDs and applications in the 3D printing of composites. Chemical Society Reviews, 2021, 50, 3824-3841.	38.1	110
29	Blue Light Sensitive Dyes for Various Photopolymerization Reactions: Naphthalimide and Naphthalic Anhydride Derivatives Macromolecules, 2014, 47, 601-608.	4.8	106
30	New Photoinitiators Based on the Silyl Radical Chemistry: Polymerization Ability, ESR Spin Trapping, and Laser Flash Photolysis Investigation. Macromolecules, 2008, 41, 4180-4186.	4.8	103
31	A Novel Photopolymerization Initiating System Based on an Iridium Complex Photocatalyst. Macromolecular Rapid Communications, 2011, 32, 917-920.	3.9	103
32	Carbazole Derivatives with Thermally Activated Delayed Fluorescence Property as Photoinitiators/Photoredox Catalysts for LED 3D Printing Technology. Macromolecules, 2017, 50, 4913-4926.	4.8	100
33	Coumarin derivatives as versatile photoinitiators for 3D printing, polymerization in water and photocomposite synthesis. Polymer Chemistry, 2019, 10, 872-884.	3.9	100
34	Photocatalyzed Cu-Based ATRP Involving an Oxidative Quenching Mechanism under Visible Light. Macromolecules, 2015, 48, 1972-1980.	4.8	99
35	Zinc Tetraphenylporphyrin as High Performance Visible Light Photoinitiator of Cationic Photosensitive Resins for LED Projector 3D Printing Applications. Macromolecules, 2017, 50, 746-753.	4.8	99
36	Aminoalkyl Radicals:  Direct Observation and Reactivity toward Oxygen, 2,2,6,6-Tetramethylpiperidine- <i>N</i> -oxyl, and Methyl Acrylate. Journal of Physical Chemistry A, 2007, 111, 6991-6998.	2.5	98

#	Article	IF	CITATIONS
37	Design of Novel Photoinitiators for Radical and Cationic Photopolymerizations under Near UV and Visible LEDs (385, 395, and 405 nm) Macromolecules, 2014, 47, 2811-2819.	4.8	98
38	Blue-to-Red Light Sensitive Push–Pull Structured Photoinitiators: Indanedione Derivatives for Radical and Cationic Photopolymerization Reactions. Macromolecules, 2013, 46, 3332-3341.	4.8	95
39	A new role of curcumin: as a multicolor photoinitiator for polymer fabrication under household UV to red LED bulbs. Polymer Chemistry, 2015, 6, 5053-5061.	3.9	95
40	A benzophenoneâ€naphthalimide derivative as versatile photoinitiator of polymerization under near <scp>UV</scp> and visible lights. Journal of Polymer Science Part A, 2015, 53, 445-451.	2.3	95
41	Iridium complexes incorporating coumarin moiety as catalyst photoinitiators: Towards household green LED bulb and halogen lamp irradiation. Polymer, 2012, 53, 2803-2808.	3.8	94
42	Organic Photocatalyst for Polymerization Reactions: 9,10-Bis[(triisopropylsilyl)ethynyl]anthracene. ACS Macro Letters, 2012, 1, 198-203.	4.8	93
43	Copper photoredox catalysts for polymerization upon near UV or visible light: structure/reactivity/efficiency relationships and use in LED projector 3D printing resins. Polymer Chemistry, 2017, 8, 568-580.	3.9	93
44	Charge Transfer Complexes as Pan-Scaled Photoinitiating Systems: From 50 μm 3D Printed Polymers at 405 nm to Extremely Deep Photopolymerization (31 cm). Macromolecules, 2018, 51, 57-70.	4.8	93
45	Push–pull (thio)barbituric acid derivatives in dye photosensitized radical and cationic polymerization reactions under 457/473 nm laser beams or blue LEDs. Polymer Chemistry, 2013, 4, 3866.	3.9	92
46	Cationic and Thiol–Ene Photopolymerization upon Red Lights Using Anthraquinone Derivatives as Photoinitiators. Macromolecules, 2013, 46, 6744-6750.	4.8	91
47	Design of new Type I and Type II photoinitiators possessing highly coupled pyrene–ketone moieties. Polymer Chemistry, 2013, 4, 2313.	3.9	91
48	Julolidine or Fluorenone Based Push–Pull Dyes for Polymerization upon Soft Polychromatic Visible Light or Green Light Macromolecules, 2014, 47, 106-112.	4.8	91
49	Variations on the Benzophenone Skeleton: Novel High Performance Blue Light Sensitive Photoinitiating Systems. Macromolecules, 2013, 46, 7661-7667.	4.8	89
50	Metal and metal-free photocatalysts: mechanistic approach and application as photoinitiators of photopolymerization. Beilstein Journal of Organic Chemistry, 2014, 10, 863-876.	2.2	87
51	Photoredox catalysis using a new iridium complex as an efficient toolbox for radical, cationic and controlled polymerizations under soft blue to green lights. Polymer Chemistry, 2015, 6, 613-624.	3.9	87
52	Mechanistic Investigation of the Silane, Germane, and Stannane Behavior When Incorporated in Type I and Type II Photoinitiators of Polymerization in Aerated Media. Macromolecules, 2009, 42, 8725-8732.	4.8	86
53	Recent Developments of Versatile Photoinitiating Systems for Cationic Ring Opening Polymerization Operating at Any Wavelengths and under Low Light Intensity Sources. Molecules, 2015, 20, 7201-7221.	3.8	86
54	Nâ€Heterocyclic Carbene Boranes Accelerate Typeâ€I Radical Photopolymerizations and Overcome Oxygen Inhibition. Angewandte Chemie - International Edition, 2012, 51, 5958-5961.	13.8	85

#	Article	IF	CITATIONS
55	Lightâ€Harvesting Organic Photoinitiators of Polymerization. Macromolecular Rapid Communications, 2013, 34, 239-245.	3.9	85
56	A dinuclear gold(<scp>i</scp>) complex as a novel photoredox catalyst for light-induced atom transfer radical polymerization. Polymer Chemistry, 2015, 6, 4605-4611.	3.9	85
57	3-Hydroxyflavone and <i>N</i> -Phenylglycine in High Performance Photoinitiating Systems for 3D Printing and Photocomposites Synthesis. Macromolecules, 2018, 51, 4633-4641.	4.8	85
58	Germanes as efficient coinitiators in radical and cationic photopolymerizations. Journal of Polymer Science Part A, 2008, 46, 3042-3047.	2.3	84
59	Electron Spin Resonance Spin Trapping Technique: Application to the Cleavage Process of Photoinitiators. Macromolecular Chemistry and Physics, 2008, 209, 2223-2231.	2.2	84
60	New thioxanthone and xanthone photoinitiators based on silyl radical chemistry. Polymer Chemistry, 2011, 2, 1077-1084.	3.9	83
61	Structural Effects in the Indanedione Skeleton for the Design of Low Intensity 300–500 nm Light Sensitive Initiators Macromolecules, 2014, 47, 26-34.	4.8	83
62	Combination of transition metal carbonyls and silanes: New photoinitiating systems. Journal of Polymer Science Part A, 2010, 48, 1830-1837.	2.3	82
63	Azahelicenes as visible light photoinitiators for cationic and radical polymerization: Preparation of photoluminescent polymers and use in high performance LED projector 3D printing resins. Journal of Polymer Science Part A, 2017, 55, 1189-1199.	2.3	82
64	Overcoming the oxygen inhibition in the photopolymerization of acrylates: A study of the beneficial effect of triphenylphosphine. Journal of Polymer Science Part A, 2010, 48, 2462-2469.	2.3	81
65	Photoinitiation mechanism of free radical photopolymerization in the presence of cyclic acetals and related compounds. Journal of Polymer Science Part A, 2010, 48, 5758-5766.	2.3	81
66	Trifunctional Photoinitiators Based on a Triazine Skeleton for Visible Light Source and UV LED Induced Polymerizations. Macromolecules, 2012, 45, 8639-8647.	4.8	81
67	Panchromatic Photopolymerizable Cationic Films Using Indoline and Squaraine Dye Based Photoinitiating Systems. ACS Macro Letters, 2013, 2, 736-740.	4.8	81
68	Chalcone derivatives as highly versatile photoinitiators for radical, cationic, thiol–ene and IPN polymerization reactions upon exposure to visible light. Polymer Chemistry, 2014, 5, 382-390.	3.9	81
69	Specific cationic photoinitiators for near UV and visible LEDs: Iodonium versus ferrocenium structures. Journal of Applied Polymer Science, 2015, 132, .	2.6	81
70	Organic Electronics: An El Dorado in the Quest of New Photocatalysts for Polymerization Reactions. Accounts of Chemical Research, 2016, 49, 1980-1989.	15.6	81
71	Three-component photoinitiating systems: towards innovative tailor made high performance combinations. RSC Advances, 2012, 2, 2621.	3.6	80
72	Multicolor Photoinitiators for Radical and Cationic Polymerization: Monofunctional vs Polyfunctional Thiophene Derivatives. Macromolecules, 2013, 46, 6786-6793.	4.8	80

#	Article	IF	CITATIONS
73	Green light sensitive diketopyrrolopyrrole derivatives used in versatile photoinitiating systems for photopolymerizations. Polymer Chemistry, 2014, 5, 2293.	3.9	80
74	Photoinduced free radical promoted cationic polymerization 40 years after its discovery. Polymer Chemistry, 2020, 11, 1111-1121.	3.9	79
75	Zinc-based metal complexes as new photocatalysts in polymerization initiating systems. European Polymer Journal, 2013, 49, 1040-1049.	5.4	78
76	New Cleavable Photoinitiator Architecture with Huge Molar Extinction Coefficients for Polymerization in the 340–450 nm Range Macromolecules, 2013, 46, 736-746.	4.8	78
77	Reactivity of Carbon-Centered Radicals toward Acrylate Double Bonds:  Relative Contribution of Polar vs Enthalpy Effects. Journal of Physical Chemistry A, 2004, 108, 4326-4334.	2.5	77
78	New insights into radical and cationic polymerizations upon visible light exposure: role of novel photoinitiator systems based on the pyrene chromophore. Polymer Chemistry, 2013, 4, 1625-1634.	3.9	77
79	Redâ€Lightâ€Induced Cationic Photopolymerization: Perylene Derivatives as Efficient Photoinitiators. Macromolecular Rapid Communications, 2013, 34, 1452-1458.	3.9	77
80	Visible light photoinitiating systems by charge transfer complexes: Photochemistry without dyes. Progress in Polymer Science, 2020, 107, 101277.	24.7	77
81	Development of a Robust Photocatalyzed ATRP Mechanism Exhibiting Good Tolerance to Oxygen and Inhibitors. Macromolecules, 2016, 49, 7653-7666.	4.8	76
82	Novel naphthalimide–amine based photoinitiators operating under violet and blue LEDs and usable for various polymerization reactions and synthesis of hydrogels. Polymer Chemistry, 2016, 7, 418-429.	3.9	76
83	Photopolymerization of Cationic Monomers and Acrylate/Divinylether Blends under Visible Light Using Pyrromethene Dyes. Macromolecules, 2012, 45, 6864-6868.	4.8	75
84	A novel naphthalimide scaffold based iodonium salt as a one-component photoacid/photoinitiator for cationic and radical polymerization under LED exposure. Polymer Chemistry, 2016, 7, 5873-5879.	3.9	75
85	Recent advances in sunlight induced polymerization: role of new photoinitiating systems based on the silyl radical chemistry. Polymer Chemistry, 2011, 2, 1107-1113.	3.9	74
86	Dihydroxyanthraquinone derivatives: natural dyes as blue-light-sensitive versatile photoinitiators of photopolymerization. Polymer Chemistry, 2016, 7, 7316-7324.	3.9	74
87	Soft Photopolymerizations Initiated by Dye-Sensitized Formation of NHC-Boryl Radicals under Visible Light. Macromolecules, 2013, 46, 43-48.	4.8	72
88	A monocomponent bifunctional benzophenone–carbazole type II photoinitiator for LED photoinitiating systems. Polymer Chemistry, 2020, 11, 3551-3556.	3.9	72
89	Photoinitiators derived from natural product scaffolds: monochalcones in three-component photoinitiating systems and their applications in 3D printing. Polymer Chemistry, 2020, 11, 4647-4659.	3.9	72
90	Tris(trimethylsilyl)silane (TTMSS)-Derived Radical Reactivity toward Alkenes:Â A Combined Quantum Mechanical and Laser Flash Photolysis Study. Journal of Organic Chemistry, 2007, 72, 6434-6439.	3.2	71

#	Article	IF	CITATIONS
91	Mechanistic and Preparative Studies of Radical Chain Homolytic Substitution Reactions of N-Heterocyclic Carbene Boranes and Disulfides. Journal of the American Chemical Society, 2013, 135, 10484-10491.	13.7	71
92	Photochemical Production of Interpenetrating Polymer Networks; Simultaneous Initiation of Radical and Cationic Polymerization Reactions. Polymers, 2014, 6, 2588-2610.	4.5	71
93	Iron complexes as potential photocatalysts for controlled radical photopolymerizations: A tool for modifications and patterning of surfaces. Journal of Polymer Science Part A, 2016, 54, 702-713.	2.3	71
94	<i>In silico</i> rational design by molecular modeling of new ketones as photoinitiators in three-component photoinitiating systems: application in 3D printing. Polymer Chemistry, 2020, 11, 2230-2242.	3.9	71
95	Different NIR dye scaffolds for polymerization reactions under NIR light. Polymer Chemistry, 2019, 10, 6505-6514.	3.9	70
96	<i>N</i> -[2-(Dimethylamino)ethyl]-1,8-naphthalimide derivatives as photoinitiators under LEDs. Polymer Chemistry, 2018, 9, 994-1003.	3.9	69
97	N-Heterocyclic carbene-borane radicals as efficient initiating species of photopolymerization reactions under air. Polymer Chemistry, 2011, 2, 625-631.	3.9	67
98	Copper (Photo)redox Catalyst for Radical Photopolymerization in Shadowed Areas and Access to Thick and Filled Samples. Macromolecules, 2017, 50, 3761-3771.	4.8	66
99	Visible-light-mediated α-phosphorylation of <i>N</i> -aryl tertiary amines through the formation of electron-donor–acceptor complexes: synthetic and mechanistic studies. Organic Chemistry Frontiers, 2019, 6, 41-44.	4.5	66
100	Visible-Light-Mediated Metal-Free Synthesis of Aryl Phosphonates: Synthetic and Mechanistic Investigations. Organic Letters, 2018, 20, 4164-4167.	4.6	65
101	Phenothiazine derivatives as photoredox catalysts for cationic and radical photosensitive resins for 3D printing technology and photocomposite synthesis. Polymer Chemistry, 2019, 10, 6145-6156.	3.9	65
102	Photoinduced Thermal Polymerization Reactions. Macromolecules, 2018, 51, 8808-8820.	4.8	63
103	New Phosphine Oxides as High Performance Near- UV Type I Photoinitiators of Radical Polymerization. Molecules, 2020, 25, 1671.	3.8	63
104	Perylene derivatives as photoinitiators in blue light sensitive cationic or radical curable films and panchromatic thiol-ene polymerizable films. European Polymer Journal, 2014, 53, 215-222.	5.4	62
105	A New Highly Efficient Amine-Free and Peroxide-Free Redox System for Free Radical Polymerization under Air with Possible Light Activation. Macromolecules, 2016, 49, 6296-6309.	4.8	62
106	Copper photoredox catalyst "G1― a new high performance photoinitiator for near-UV and visible LEDs. Polymer Chemistry, 2017, 8, 5580-5592.	3.9	62
107	On-Demand Visible Light Activated Amine/Benzoyl Peroxide Redox Initiating Systems: A Unique Tool To Overcome the Shadow Areas in Photopolymerization Processes. Macromolecules, 2016, 49, 9371-9381.	4.8	61
108	New chromone based photoinitiators for polymerization reactions under visible light. Polymer Chemistry, 2013, 4, 4234.	3.9	60

#	Article	IF	CITATIONS
109	Novel Carbazole Skeleton-Based Photoinitiators for LED Polymerization and LED Projector 3D Printing. Molecules, 2017, 22, 2143.	3.8	60
110	Acridone derivatives as high performance visible light photoinitiators for cationic and radical photosensitive resins for 3D printing technology and for low migration photopolymer property. Polymer, 2018, 159, 47-58.	3.8	60
111	Photochemical C–H Silylation and Hydroxymethylation of Pyridines and Related Structures: Synthetic Scope and Mechanisms. ACS Catalysis, 2020, 10, 13710-13717.	11.2	60
112	A Water-Compatible NHC-Borane: Photopolymerizations in Water and Rate Constants for Elementary Radical Reactions. ACS Macro Letters, 2012, 1, 92-95.	4.8	59
113	Development of new highâ€performance visible light photoinitiators based on carbazole scaffold and their applications in 3d printing and photocomposite synthesis. Journal of Polymer Science Part A, 2019, 57, 2081-2092.	2.3	59
114	NIR Sensitizer Operating under Long Wavelength (1064Ânm) for Free Radical Photopolymerization Processes. Macromolecular Rapid Communications, 2020, 41, e2000289.	3.9	59
115	Bis-chalcone derivatives derived from natural products as near-UV/visible light sensitive photoinitiators for 3D/4D printing. Materials Chemistry Frontiers, 2021, 5, 901-916.	5.9	59
116	Simultaneous initiation of radical and cationic polymerization reactions using the "G1―copper complex as photoredox catalyst: Applications of free radical/cationic hybrid photopolymerization in the composites and 3D printing fields. Progress in Organic Coatings, 2019, 132, 50-61.	3.9	58
117	New Highly Efficient Radical Photoinitiators Based on Siâ^'Si Bond Cleavage. Macromolecules, 2007, 40, 8527-8530.	4.8	57
118	New Boryl Radicals Derived from Nâ€Heteroaryl Boranes: Generation and Reactivity. Chemistry - A European Journal, 2010, 16, 12920-12927.	3.3	57
119	Importance of the Position of the Chromophore Group on the Dissociation Process of Light Sensitive Alkoxyamines. Macromolecular Rapid Communications, 2010, 31, 1909-1913.	3.9	57
120	Difunctional acridinediones as photoinitiators of polymerization under UV andÂvisible lights: Structural effects. Polymer, 2013, 54, 3458-3466.	3.8	57
121	Formation of N-Heterocyclic Carbene–Boryl Radicals through Electrochemical and Photochemical Cleavage of the B–S bond in N-Heterocyclic Carbene–Boryl Sulfides. Journal of the American Chemical Society, 2013, 135, 16938-16947.	13.7	57
122	Metal-Free Synthesis of 6-Phosphorylated Phenanthridines: Synthetic and Mechanistic Insights. Organic Letters, 2016, 18, 5900-5903.	4.6	57
123	New sulfur-centered radicals as photopolymerization initiating species. Journal of Polymer Science Part A, 2007, 45, 2494-2502.	2.3	56
124	Acylgermanes: Excited state processes and reactivity. Chemical Physics Letters, 2009, 469, 298-303.	2.6	56
125	Greenâ€Lightâ€Induced Cationic Ring Opening Polymerization Reactions: Peryleneâ€3,4:9,10â€ <i>bis</i> (Dicarboximide) as Efficient Photosensitizers. Macromolecular Chemistry and Physics, 2013, 214, 1052-1060.	2.2	56
126	The carbazole-bound ferrocenium salt as a specific cationic photoinitiator upon near-UV and visible LEDs (365–405Ânm). Polymer Bulletin, 2016, 73, 493-507.	3.3	56

#	Article	IF	CITATIONS
127	Redox two-component initiated free radical and cationic polymerizations: Concepts, reactions and applications. Progress in Polymer Science, 2019, 94, 33-56.	24.7	56
128	Photoinitiating systems of polymerization and in situ incorporation of metal nanoparticles into polymer matrices upon exposure to visible light: push–pull malonate and malononitrile based dyes. Polymer Chemistry, 2013, 4, 5679.	3.9	55
129	Naphthalimideâ€phthalimide derivative based photoinitiating systems for polymerization reactions under blue lights. Journal of Polymer Science Part A, 2015, 53, 665-674.	2.3	55
130	Novel Photoinitiators Based on Benzophenoneâ€īriphenylamine Hybrid Structure for LED Photopolymerization. Macromolecular Rapid Communications, 2020, 41, e2000460.	3.9	55
131	Long Wavelength Cationic Photopolymerization in Aerated Media: A Remarkable Titanocene/Tris(trimethylsilyl)silane/Onium Salt Photoinitiating System Macromolecules, 2009, 42, 8669-8674.	4.8	54
132	New pyridinium salts as versatile compounds for dye sensitized photopolymerization. European Polymer Journal, 2013, 49, 567-574.	5.4	54
133	UV-violet-blue LED induced polymerizations: Specific photoinitiating systems at 365, 385, 395 and 405Ânm. Polymer, 2014, 55, 6641-6648.	3.8	54
134	Ï€-Conjugated Dithienophosphole Derivatives as High Performance Photoinitiators for 3D Printing Resins. Macromolecules, 2018, 51, 1811-1821.	4.8	53
135	Ferrocene-based (photo)redox polymerization under long wavelengths. Polymer Chemistry, 2019, 10, 1431-1441.	3.9	53
136	Design of photoinitiating systems based on the chalcone-anthracene scaffold for LED cationic photopolymerization and application in 3D printing. European Polymer Journal, 2021, 147, 110300.	5.4	53
137	New Photoiniferters: Respective Role of the Initiating and Persistent Radicals. Macromolecules, 2008, 41, 2347-2352.	4.8	52
138	A Multicolor Photoinitiator for Cationic Polymerization and Interpenetrated Polymer Network Synthesis: 2,7â€Điâ€ <i>tert</i> â€butyldimethyldihydropyrene. Macromolecular Rapid Communications, 2013, 34, 1104-1109.	3.9	52
139	Naphthalimide Derivatives: Substituent Effects on the Photoinitiating Ability in Polymerizations under Near UV, Purple, White and Blue LEDs (385, 395, 405, 455, or 470 nm). Macromolecular Chemistry and Physics, 2015, 216, 1782-1790.	2.2	52
140	Carbazole-based compounds as photoinitiators for free radical and cationic polymerization upon near visible light illumination. Photochemical and Photobiological Sciences, 2018, 17, 578-585.	2.9	51
141	Mechanosynthesis of a Copper complex for redox initiating systems with a unique near infrared light activation. Journal of Polymer Science Part A, 2017, 55, 3646-3655.	2.3	50
142	Design of Iodonium Salts for UV or Near-UV LEDs for Photoacid Generator and Polymerization Purposes. Molecules, 2020, 25, 149.	3.8	50
143	Novel D–Ĩ€-A and A–Ĩ€-D–Ĩ€-A three-component photoinitiating systems based on carbazole/triphenylamino based chalcones and application in 3D and 4D printing. Polymer Chemistry, 2020, 11, 6512-6528.	3.9	50
144	Monocomponent Photoinitiators based on Benzophenone-Carbazole Structure for LED Photoinitiating Systems and Application on 3D Printing. Polymers, 2020, 12, 1394.	4.5	50

#	Article	IF	CITATIONS
145	Nitro arbazole Based Oxime Esters as Dual Photo/Thermal Initiators for 3D Printing and Composite Preparation. Macromolecular Rapid Communications, 2021, 42, e2100207.	3.9	50
146	Boryl Radicals as a New Photoinitiating Species: A Way to Reduce the Oxygen Inhibition. Macromolecules, 2008, 41, 9057-9062.	4.8	49
147	Effect of Lewis base coordination on boryl radical reactivity: investigation using laser flash photolysis and kinetic ESR. Journal of Physical Organic Chemistry, 2009, 22, 986-993.	1.9	49
148	New functionalized aromatic ketones as photoinitiating systems for near visible and visible light induced polymerizations. Polymer, 2013, 54, 2857-2864.	3.8	49
149	Ketoâ€coumarin scaffold for photoinitiators for 3D printing and photocomposites. Journal of Polymer Science, 2020, 58, 1115-1129.	3.8	49
150	Photopolymerization and 3D/4D applications using newly developed dyes: Search around the natural chalcone scaffold in photoinitiating systems. Dyes and Pigments, 2021, 188, 109213.	3.7	49
151	Organic dyeâ€based photoinitiating systems for visibleâ€lightâ€induced photopolymerization. Journal of Polymer Science, 2021, 59, 1338-1389.	3.8	49
152	BODIPY derivatives and boranil as new photoinitiating systems of cationic polymerization exhibiting a tunable absorption in the 400–600Ânm spectral range. Polymer, 2013, 54, 2071-2076.	3.8	48
153	Diketopyrrolopyrrole dyes: Structure/reactivity/efficiency relationship in photoinitiating systems upon visible lights. Polymer, 2014, 55, 746-751.	3.8	48
154	Tris(trimethylsilyl)silyl versus tris(trimethylsilyl)germyl: Radical reactivity and oxidation ability. Journal of Organometallic Chemistry, 2008, 693, 3643-3649.	1.8	47
155	Amino and nitro substituted 2-amino-1H-benzo[de]isoquinoline-1,3(2H)-diones: as versatile photoinitiators of polymerization from violet-blue LED absorption to a panchromatic behavior. Polymer Chemistry, 2015, 6, 1171-1179.	3.9	47
156	Investigation into the mechanism of photo-mediated RAFT polymerization involving the reversible photolysis of the chain-transfer agent. Polymer Chemistry, 2017, 8, 1760-1770.	3.9	47
157	Silyl Glyoxylates as a New Class of High Performance Photoinitiators: Blue LED Induced Polymerization of Methacrylates in Thin and Thick Films. Macromolecules, 2017, 50, 6911-6923.	4.8	47
158	Naphthalimideâ€Tertiary Amine Derivatives as Blueâ€Lightâ€Sensitive Photoinitiators. ChemPhotoChem, 2018, 2, 481-489.	3.0	47
159	Photochemical, Thermal Free Radical, and Cationic Polymerizations Promoted by Charge Transfer Complexes: Simple Strategy for the Fabrication of Thick Composites. Macromolecules, 2018, 51, 7872-7880.	4.8	47
160	Thermal and Photochemical Stability of Anthocyanins from Black Carrot, Grape Juice, and Purple Sweet Potato in Model Beverages in the Presence of Ascorbic Acid. Journal of Agricultural and Food Chemistry, 2019, 67, 5647-5660.	5.2	47
161	Coumarins as Powerful Photosensitizers for the Cationic Polymerization of Epoxy-Silicones under Near-UV and Visible Light and Applications for 3D Printing Technology. Molecules, 2020, 25, 2063.	3.8	47
162	Near UV–visible light induced cationic photopolymerization reactions: A three component photoinitiating system based on acridinedione/silane/iodonium salt. European Polymer Journal, 2010, 46, 2138-2144.	5.4	46

#	Article	IF	CITATIONS
163	New copper(i) complex based initiating systems in redox polymerization and comparison with the amine/benzoyl peroxide reference. Polymer Chemistry, 2017, 8, 4088-4097.	3.9	46
164	Mechanosynthesized copper(i) complex based initiating systems for redox polymerization: towards upgraded oxidizing and reducing agents. Polymer Chemistry, 2017, 8, 5884-5896.	3.9	46
165	New Initiating Systems for Thermal Cationic Polymerization at Ambient Temperature with in situ Formation of Ag(0) Nanoparticles: A Silane/Silver Salt Combination. Macromolecular Chemistry and Physics, 2010, 211, 1441-1445.	2.2	45
166	Thiyl Radical Generation in Thiol or Disulfide Containing Photosensitive Systems. Macromolecular Chemistry and Physics, 2009, 210, 311-319.	2.2	44
167	On the Favorable Interaction of Metal Centered Radicals with Hydroperoxides for an Enhancement of the Photopolymerization Efficiency Under Air. Macromolecules, 2010, 43, 6608-6615.	4.8	44
168	Dye photosensitized cationic ring-opening polymerization: Search for new dye skeletons. Polymer, 2012, 53, 4947-4954.	3.8	43
169	Rational Design of Acyldiphenylphosphine Oxides as Photoinitiators of Radical Polymerization. Macromolecules, 2019, 52, 7886-7893.	4.8	43
170	NIR Organic Dyes as Innovative Tools for Reprocessing/Recycling of Plastics: Benefits of the Photothermal Activation in the Nearâ€Infrared Range. Advanced Functional Materials, 2021, 31, 2006324.	14.9	43
171	N-ethyl carbazole-1-allylidene-based push-pull dyes as efficient light harvesting photoinitiators for sunlight induced polymerization. European Polymer Journal, 2021, 147, 110331.	5.4	43
172	New hybrid MOF/polymer composites for the photodegradation of organic dyes. European Polymer Journal, 2021, 154, 110560.	5.4	43
173	New multifunctional benzophenone-based photoinitiators with high migration stability and their applications in 3D printing. Materials Chemistry Frontiers, 2021, 5, 1982-1994.	5.9	43
174	Radical and cationic photopolymerization: New pyrylium and thiopyrylium saltâ€based photoinitiating systems. Journal of Polymer Science Part A, 2008, 46, 7369-7375.	2.3	42
175	Household LED irradiation under air: cationic polymerization using iridium or ruthenium complex photocatalysts. Polymer Bulletin, 2012, 68, 341-347.	3.3	42
176	Delivery of Amonafide from Fructose-Coated Nanodiamonds by Oxime Ligation for the Treatment of Human Breast Cancer. Biomacromolecules, 2018, 19, 481-489.	5.4	42
177	Substituent effects on the photoinitiation ability of coumarin-based oxime-ester photoinitiators for free radical photopolymerization. Materials Chemistry Frontiers, 2021, 5, 8361-8370.	5.9	42
178	Photosensitized alkoxyamines as bicomponent radical photoinitiators. Journal of Polymer Science Part A, 2010, 48, 2910-2915.	2.3	41
179	Paprika, Gallic Acid, and Visible Light: The Green Combination for the Synthesis of Biocide Coatings. ACS Sustainable Chemistry and Engineering, 2018, 6, 104-109.	6.7	41
180	New 1,8-Naphthalimide Derivatives as Photoinitiators for Free-Radical Polymerization Upon Visible Light. Catalysts, 2019, 9, 637.	3.5	41

#	Article	IF	CITATIONS
181	New bimolecular photoinitiating systems based on terphenyl derivatives as highly efficient photosensitizers for 3D printing application. Polymer Chemistry, 2020, 11, 922-935.	3.9	41
182	The Camphorquinone/Amine and Camphorquinone/Amine/Phosphine Oxide Derivative Photoinitiating Systems: Overview, Mechanistic Approach, and Role of the Excitation Light Source. Macromolecular Chemistry and Physics, 2015, 216, 2161-2170.	2.2	40
183	A low migration phosphine to overcome the oxygen inhibition in new high performance photoinitiating systems for photocurable dental type resins. Polymer International, 2017, 66, 504-511.	3.1	40
184	Organometallic vs organic photoredox catalysts for photocuring reactions in the visible region. Beilstein Journal of Organic Chemistry, 2018, 14, 3025-3046.	2.2	40
185	Visible Light Chiral Photoinitiator for Radical Polymerization and Synthesis of Polymeric Films with Strong Chiroptical Activity. Macromolecules, 2018, 51, 5628-5637.	4.8	40
186	Photoinitiator-catalyst systems based on <i>meta</i> -terphenyl derivatives as photosensitisers of iodonium and thianthrenium salts for visible photopolymerization in 3D printing processes. Polymer Chemistry, 2020, 11, 4604-4621.	3.9	40
187	Comparative reactivity of aminyl and aminoalkyl radicals. Chemical Physics Letters, 2007, 438, 346-350.	2.6	39
188	Panchromatic photoinitiators for radical, cationic and thiol-ene polymerization reactions: A search in the diketopyrrolopyrrole or indigo dye series. Materials Today Communications, 2015, 4, 101-108.	1.9	39
189	Copper-Based (Photo)redox Initiating Systems as Highly Efficient Systems for Interpenetrating Polymer Network Preparation. Macromolecules, 2018, 51, 679-688.	4.8	39
190	One-component cationic photoinitiators based on coumarin scaffold iodonium salts as highly sensitive photoacid generators for 3D printing IPN photopolymers under visible LED sources. Polymer Chemistry, 2020, 11, 5261-5278.	3.9	39
191	On demand NIR activated photopolyaddition reactions. Polymer Chemistry, 2020, 11, 4250-4259.	3.9	39
192	Allyloxy ketones as efficient photoinitiators with high migration stability in free radical polymerization and 3D printing. Dyes and Pigments, 2021, 185, 108900.	3.7	39
193	Disubstituted Aminoanthraquinone-Based Photoinitiators for Free Radical Polymerization and Fast 3D Printing under Visible Light. Macromolecules, 2018, 51, 10104-10112.	4.8	38
194	Novel Push–Pull Dyes Derived from 1H-cyclopenta[b]naphthalene-1,3(2H)-dione as Versatile Photoinitiators for Photopolymerization and Their Related Applications: 3D Printing and Fabrication of Photocomposites. Catalysts, 2020, 10, 1196.	3.5	38
195	Novel ketone derivative-based photoinitiating systems for free radical polymerization under mild conditions and 3D printing. Polymer Chemistry, 2020, 11, 5767-5777.	3.9	38
196	Free Radical Photopolymerization and 3D Printing Using Newly Developed Dyes: Indane-1,3-Dione and 1H-Cyclopentanaphthalene-1,3-Dione Derivatives as Photoinitiators in Three-Component Systems. Catalysts, 2020, 10, 463.	3.5	38
197	High-performance sunlight induced polymerization using novel push-pull dyes with high light absorption properties. European Polymer Journal, 2021, 151, 110410.	5.4	38
198	Silyl Radical Chemistry and Conventional Photoinitiators: A Route for the Design of Efficient Systems. Macromolecules, 2009, 42, 6031-6037.	4.8	37

#	Article	IF	CITATIONS
199	<i>N</i> â€Vinylcarbazole as Versatile Photoinaddimer of Photopolymerization under Household UV LED Bulb (392 nm). Macromolecular Rapid Communications, 2015, 36, 1675-1680.	3.9	37
200	Indole-based charge transfer complexes as versatile dual thermal and photochemical polymerization initiators for 3D printing and composites. Polymer Chemistry, 2019, 10, 4991-5000.	3.9	37
201	Visibleâ€Light Emulsion Photopolymerization of Styrene. Angewandte Chemie - International Edition, 2018, 57, 957-961.	13.8	37
202	A known photoinitiator for a novel technology: 2-(4-methoxystyryl)-4,6-bis(trichloromethyl)-1,3,5-triazine for near UV or visible LED. Polymer Chemistry, 2014, 5, 6019-6026.	3.9	36
203	End capped polyenic structures as visible light sensitive photoinitiators for polymerization of vinylethers. Dyes and Pigments, 2014, 105, 121-129.	3.7	36
204	Design of keto-coumarin based photoinitiator for Free Radical Photopolymerization: Towards 3D printing and photocomposites applications. European Polymer Journal, 2021, 154, 110559.	5.4	36
205	Bis(germyl)ketones: Toward a New Class of Type I Photoinitiating Systems Sensitive Above 500 nm?. Macromolecular Rapid Communications, 2010, 31, 473-478.	3.9	35
206	Novel panchromatic photopolymerizable matrices: <i>N</i> , <i>N</i> '-dibutylquinacridone as an efficient and versatile photoinitiator. Journal of Polymer Science Part A, 2015, 53, 1719-1727.	2.3	35
207	Nearâ€Infrared PhotoInitiating Systems: Photothermal versus Triplet–Triplet Annihilationâ€Based Upconversion Polymerization. Macromolecular Rapid Communications, 2021, 42, e2100047.	3.9	35
208	Michler's Ketone as an Interesting Scaffold for the Design of Highâ€Performance Dyes in Photoinitiating Systems Upon Visible Light. Macromolecular Chemistry and Physics, 2014, 215, 783-790.	2.2	34
209	<i>Meta</i> -Terphenyl Derivative/Iodonium Salt/9H-Carbazole-9-ethanol Photoinitiating Systems for Free Radical Promoted Cationic Polymerization upon Visible Lights. Macromolecular Chemistry and Physics, 2016, 217, 1955-1965.	2.2	34
210	3D Printing of Polydiacetylene Photocomposite Materials: Two Wavelengths for Two Orthogonal Chemistries. ACS Applied Materials & Interfaces, 2020, 12, 1658-1664.	8.0	34
211	Mono vs. Difunctional Coumarin as Photoinitiators in Photocomposite Synthesis and 3D Printing. Catalysts, 2020, 10, 1202.	3.5	34
212	Design of ketone derivatives as highly efficient photoinitiators for free radical and cationic photopolymerizations and application in <scp>3D</scp> printing of composites. Journal of Polymer Science, 2020, 58, 3432-3445.	3.8	34
213	Development of the first panchromatic BODIPY-based one-component iodonium salts for initiating the photopolymerization processes. Polymer Chemistry, 2021, 12, 6873-6893.	3.9	34
214	Structural effects on the photodissociation of alkoxyamines. Organic and Biomolecular Chemistry, 2011, 9, 2892.	2.8	33
215	Ketone derivatives as photoinitiators for both radical and cationic photopolymerizations under visible LED and application in 3D printing. European Polymer Journal, 2020, 132, 109737.	5.4	33
216	Synthesis and free radical photopolymerization of triphenylamine-based oxime ester photoinitiators. Polymer Chemistry, 2021, 12, 1286-1297.	3.9	33

#	Article	IF	CITATIONS
217	Iodoniumâ€polyoxometalate and thianthreniumâ€polyoxometalate as new oneâ€component <scp>UV</scp> photoinitiators for radical and cationic polymerization. Journal of Polymer Science Part A, 2015, 53, 981-989.	2.3	32
218	One-component thioxanthone-based polymeric photoinitiators. Journal of Polymer Science Part A, 2016, 54, 3370-3378.	2.3	32
219	<i>N</i> -Phenylglycine as a Versatile Photoinitiator under Near-UV LED. Macromolecules, 2018, 51, 3767-3773.	4.8	32
220	Thioxanthone-functionalized 1,6-heptadiene as monomeric photoinitiator. Progress in Organic Coatings, 2019, 128, 148-156.	3.9	32
221	Design of new phenothiazine derivatives as visible light photoinitiators. Polymer Chemistry, 2020, 11, 3349-3359.	3.9	32
222	Controlled photopolymerization reactions: The reactivity of new photoiniferters. Journal of Polymer Science Part A, 2007, 45, 2436-2442.	2.3	31
223	Disubstituted Aminoanthraquinone-Based Multicolor Photoinitiators: Photoinitiation Mechanism and Ability of Cationic Polymerization under Blue, Green, Yellow, and Red LEDs. Macromolecules, 2018, 51, 8165-8173.	4.8	31
224	Metalated porphyrins as versatile visible light and NIR photoinitiators of polymerization. European Polymer Journal, 2020, 139, 110019.	5.4	31
225	Effect of Decarboxylation on the Photoinitiation Behavior of Nitrocarbazole-Based Oxime Esters. Macromolecules, 2022, 55, 2475-2485.	4.8	31
226	A New Efficient Photoiniferter forLivingRadical Photopolymerization. Macromolecules, 2006, 39, 8216-8218.	4.8	30
227	Respective Contributions of Polar vs Enthalpy Effects in the Addition/Fragmentation of Mercaptobenzoxazole-Derived Thiyl Radicals and Analogues to Double Bonds. Journal of Physical Chemistry A, 2006, 110, 11605-11612.	2.5	30
228	A novel photoinitiating system producing germyl radicals for the polymerization of representative methacrylate resins: Camphorquinone/R 3 GeH/iodonium salt. Dental Materials, 2016, 32, 1226-1234.	3.5	30
229	Charge Transfer Complexes as Dual Thermal and Photochemical Polymerization Initiators for 3D Printing and Composites Synthesis. ACS Applied Polymer Materials, 2019, 1, 561-570.	4.4	30
230	Freeâ€radical polymerization upon nearâ€infrared light irradiation, merging photochemical and photothermal initiating methods. Journal of Polymer Science, 2020, 58, 300-308.	3.8	30
231	Photopolymerization of Zeolite/Polymer-Based Composites: toward 3D and 4D Printing Applications. ACS Applied Polymer Materials, 2021, 3, 400-409.	4.4	30
232	In situ generation of Ag nanoparticles during photopolymerization by using newly developed dyesâ€based <scp>threeâ€component</scp> photoinitiating systems and the related <scp>3D</scp> printing applications and their shape change behavior. Journal of Polymer Science, 2021, 59, 843-859.	3.8	30
233	Water-Soluble Visible Light Sensitive Photoinitiating System Based on Charge Transfer Complexes for the 3D Printing of Hydrogels. Polymers, 2021, 13, 3195.	4.5	30
234	Performance improvement of the photocatalytic process for the degradation of pharmaceutical compounds using new POM/polymer photocatalysts. Journal of Environmental Chemical Engineering, 2021, 9, 106015.	6.7	30

#	Article	IF	CITATIONS
235	A novel class of photoinitiators with a thermally activated delayed fluorescence (TADF) property. New Journal of Chemistry, 2018, 42, 8261-8270.	2.8	29
236	Naphthalimideâ€Based Dyes as Photoinitiators under Visible Light Irradiation and their Applications: Photocomposite Synthesis, 3D printing and Polymerization in Water. ChemPhotoChem, 2021, 5, 476-490.	3.0	29
237	New hybrid perovskites/polymer composites for the photodegradation of organic dyes. European Polymer Journal, 2021, 157, 110641.	5.4	29
238	Sunlight Induced Polymerization Photoinitiated by Novel Push–Pull Dyes: Indaneâ€1,3â€Dione, 1Hâ€Cyclopenta[b]Naphthaleneâ€1,3(2H)â€Dione and 4â€Dimethoxyphenylâ€1â€Allylidene Derivatives. Macromolecular Chemistry and Physics, 2022, 223, .	2.2	29
239	Interpenetrating polymer network hydrogels using natural based dyes initiating systems: Antibacterial activity and 3D/4D performance. European Polymer Journal, 2022, 166, 111042.	5.4	29
240	New access to the peroxyl radicals reactivity?. Chemical Physics Letters, 2007, 445, 62-67.	2.6	28
241	Aminothiazonaphthalic anhydride derivatives as photoinitiators for violet/blue LEDâ€Induced cationic and radical photopolymerizations and 3Dâ€Printing resins. Journal of Polymer Science Part A, 2016, 54, 1189-1196.	2.3	28
242	Multihydroxyâ€Anthraquinone Derivatives as Free Radical and Cationic Photoinitiators of Various Photopolymerizations under Green LED. Macromolecular Rapid Communications, 2018, 39, e1800172.	3.9	28
243	Fillers as Heaters for Photothermal Polymerization upon NIR Light. Macromolecular Rapid Communications, 2019, 40, e1900495.	3.9	28
244	Photoinitiation Mechanism and Ability of Monoaminoâ€Substituted Anthraquinone Derivatives as Cationic Photoinitiators of Polymerization under LEDs. Macromolecular Rapid Communications, 2019, 40, e1900234.	3.9	28
245	5,12-Dihydroindolo[3,2-a]carbazole: A promising scaffold for the design of visible light photoinitiators of polymerization. European Polymer Journal, 2022, 162, 110880.	5.4	28
246	On the Use of Bis(cyclopentadienyl)titanium(IV) Dichloride in Visible-Light-Induced Ring-Opening Photopolymerization. Macromolecules, 2012, 45, 356-361.	4.8	27
247	UV-Induced Micropatterning of Complex Functional Surfaces by Photopolymerization Controlled by Alkoxyamines. Langmuir, 2015, 31, 10026-10036.	3.5	27
248	Cationic Photoinitiators for Near UV and Visible LEDs: A Particular Insight into One omponent Systems. Macromolecular Chemistry and Physics, 2016, 217, 1214-1227.	2.2	27
249	New violet to yellow light sensitive diketo pyrrolo–pyrrole photoinitiators: high performance systems with unusual bleaching properties and solubility in water. Polymer Chemistry, 2017, 8, 2028-2040.	3.9	27
250	Monitoring photopolymerization reactions through thermal imaging: A unique tool for the realâ€time followâ€up of thick samples, 3D printing, and composites. Journal of Polymer Science Part A, 2018, 56, 889-899.	2.3	27
251	Sulfonium salt based charge transfer complexes as dual thermal and photochemical polymerization initiators for composites and 3D printing. Polymer Chemistry, 2019, 10, 4690-4698.	3.9	27
252	Effect of Zeolite Fillers on the Photopolymerization Kinetics for Photocomposites and Lithography. ACS Applied Polymer Materials, 2019, 1, 2854-2861.	4.4	27

#	Article	IF	CITATIONS
253	3-Carboxylic Acid and Formyl-Derived Coumarins as Photoinitiators in Photo-Oxidation or Photo-Reduction Processes for Photopolymerization upon Visible Light: Photocomposite Synthesis and 3D Printing Applications. Molecules, 2021, 26, 1753.	3.8	27
254	Search for High Reactivity and Low Selectivity of Radicals toward Double Bonds:Â The Case of a Tetrazole-Derived Thiyl Radical. Journal of Organic Chemistry, 2006, 71, 9723-9727.	3.2	26
255	The Silaneâ€ene and Silaneâ€Acrylate Polymerization Process: A New Promising Chemistry?. Macromolecular Rapid Communications, 2008, 29, 804-808.	3.9	26
256	Photochemical in situ elaboration of polyoxometalate (α-[SiMo12O40]4â^')/polymer hybrid materials. Polymer Chemistry, 2013, 4, 4526.	3.9	26
257	Green Photoinduced Modification of Natural Poly(3-hydroxybutyrate- <i>co</i> -3-hydroxyvalerate) Surface for Antibacterial Applications. ACS Sustainable Chemistry and Engineering, 2014, 2, 996-1006.	6.7	26
258	New hybrid polyoxometalate/polymer composites for photodegradation of eosin dye. Journal of Polymer Science Part A, 2019, 57, 1538-1549.	2.3	26
259	Reactivity and efficiency of difunctional radical photoinitiators. Journal of Applied Polymer Science, 2008, 107, 246-252.	2.6	25
260	Nitroxide Mediated Photopolymerization: A Versatile Tool for the Fabrication of Complex Multilayer Polyfunctional Copolymer Nanostructures. Advanced Materials Interfaces, 2014, 1, 1400067.	3.7	25
261	New role of aminothiazonaphthalimide derivatives: outstanding photoinitiators for cationic and radical photopolymerizations under visible LEDs. RSC Advances, 2016, 6, 48684-48693.	3.6	25
262	Donor–acceptor–donor structured thioxanthone derivatives as visible photoinitiators. Polymer Chemistry, 2020, 11, 7221-7234.	3.9	25
263	Flavones as natural photoinitiators for light mediated freeâ€radical polymerization via light emitting diodes. Journal of Polymer Science, 2020, 58, 254-262.	3.8	25
264	The new LED-Sensitive photoinitiators of Polymerization: Copper complexes in free radical and cationic photoinitiating systems and application in 3D printing. European Polymer Journal, 2022, 162, 110885.	5.4	25
265	Stable copper acetylacetonate-based oxidizing agents in redox (NIR photoactivated) polymerization: an opportunity for the one pot <i>grafting from</i> approach and an example on a 3D printed object. Polymer Chemistry, 2018, 9, 2173-2182.	3.9	24
266	Iodinated Polystyrene for Polymeric Charge Transfer Complexes: Toward High-Performance Near-UV and Visible Light Macrophotoinitiators. Macromolecules, 2019, 52, 3448-3453.	4.8	24
267	Photopolymerization under various monochromatic UV/visible LEDs and IR lamp: Diamino-anthraquinone derivatives as versatile multicolor photoinitiators. European Polymer Journal, 2019, 112, 591-600.	5.4	24
268	Boron Compounds as Additives for the Cationic Polymerization Using Coumarin Derivatives in Epoxy Silicones. Macromolecular Chemistry and Physics, 2021, 222, 2000404.	2.2	24
269	Naphthyl-Naphthalimides as High-Performance Visible Light Photoinitiators for 3D Printing and Photocomposites Synthesis. Catalysts, 2021, 11, 1269.	3.5	24
270	LEDâ€Induced Polymerization (385, 405, and 455 nm) Using Starâ€Shaped Tris(4â€(thiophenâ€2â€yl)phenyl)an Derivatives as Lightâ€Harvesting Photoinitiators. Macromolecular Chemistry and Physics, 2015, 216, 218-227.	nine 2.2	23

#	Article	IF	CITATIONS
271	Endogenous Stable Radicals for Characterization of Thermally Carbonized Porous Silicon by Solid-State Dynamic Nuclear Polarization ¹³ C NMR. Journal of Physical Chemistry C, 2015, 119, 19272-19278.	3.1	23
272	Remarkable Versatility of Silane/Iodonium Salt as Redox Free Radical, Cationic, and Photopolymerization Initiators. Macromolecules, 2019, 52, 5638-5645.	4.8	23
273	Coumarin Derivatives as Photoinitiators in Photo-Oxidation and Photo-Reduction Processes and a Kinetic Model for Simulations of the Associated Polymerization Profiles. ACS Applied Polymer Materials, 2020, 2, 2769-2780.	4.4	23
274	Concomitant initiation of radical and cationic polymerisations using new copper complexes as photoinitiators: Synthesis and characterisation of acrylate/epoxy interpenetrated polymer networks. European Polymer Journal, 2021, 152, 110457.	5.4	23
275	Nearâ€infrared light for polymer reâ€shaping and reâ€processing applications. Journal of Polymer Science, 2021, 59, 2193-2200.	3.8	23
276	New Hybrid Feâ€based MOFs/Polymer Composites for the Photodegradation of Organic Dyes. ChemistrySelect, 2021, 6, 8120-8132.	1.5	23
277	5,12â€Dialkylâ€5,12â€dihydroindolo[3,2â€ <i>a</i>]carbazoleâ€Based Oximeâ€Esters for LED Photoinitiating Sys and Application on 3D Printing. Macromolecular Materials and Engineering, 2022, 307, .	tems 3.6	23
278	Light-Sensitive Alkoxyamines as Versatile Spatially- and Temporally- Controlled Precursors of Alkyl Radicals and Nitroxides. Journal of the American Chemical Society, 2018, 140, 3339-3344.	13.7	22
279	Visible-Light-Mediated Access to Phosphate Esters. Organic Letters, 2020, 22, 4404-4407.	4.6	22
280	Triplet State ofO-Acyloximes Studied by Time-Resolved Absorption Spectroscopy. Chemistry Letters, 2000, 29, 1090-1091.	1.3	21
281	Polymeric Photoinitiators: A New Search toward High Performance Visible Light Photoinitiating Systems. Macromolecular Chemistry and Physics, 2016, 217, 2145-2153.	2.2	21
282	Ascorbic Acid Derivatives as Potential Substitutes for Ascorbic Acid To Reduce Color Degradation of Drinks Containing Ascorbic Acid and Anthocyanins from Natural Extracts. Journal of Agricultural and Food Chemistry, 2019, 67, 12061-12071.	5.2	21
283	Polyoxometalate <scp>s</scp> /polymer composites for the photodegradation of <scp>bisphenolâ€A</scp> . Journal of Applied Polymer Science, 2021, 138, 50864.	2.6	21
284	Panchromatic Copper Complexes for Visible Light Photopolymerization. Photochem, 2021, 1, 167-189.	2.2	21
285	Difluorination at Boron Leads to the First Electrophilic Ligated Boryl Radical (NHCâ€BF ₂ [.]). Angewandte Chemie - International Edition, 2018, 57, 10251-10256.	13.8	20
286	Biocompatibility and cytotoxicity of novel photoinitiator π-conjugated dithienophosphole derivatives and their triggered polymers. Toxicology in Vitro, 2020, 63, 104720.	2.4	20
287	New Donor-Acceptor Stenhouse Adducts as Visible and Near Infrared Light Polymerization Photoinitiators. Molecules, 2020, 25, 2317.	3.8	20
288	Water-soluble/visible-light-sensitive naphthalimide derivative-based photoinitiating systems: 3D printing of antibacterial hydrogels. Polymer Chemistry, 2022, 13, 2918-2932.	3.9	20

#	Article	IF	CITATIONS
289	NHC-Boranes: Air- and Water-tolerant Co-initiators for Type II Photopolymerizations. Chimia, 2012, 66, 382.	0.6	19
290	Fluorescent Brighteners as Visible LED-Light Sensitive Photoinitiators for Free Radical Photopolymerizations. Macromolecular Rapid Communications, 2016, 37, 840-844.	3.9	19
291	Silyl glyoxylates as highâ€performance photoinitiators for cationic and hybrid polymerizations: Towards better polymer mechanical properties. Journal of Polymer Science Part A, 2019, 57, 1420-1429.	2.3	19
292	LED and solar photodecomposition of erythrosine B and rose Bengal using H3PMo12O40/polymer photocatalyst. European Polymer Journal, 2021, 159, 110743.	5.4	19
293	Structure-reactivity relationships of novel monomeric photoinitiators. Journal of Photochemistry and Photobiology A: Chemistry, 2016, 329, 77-87.	3.9	18
294	Novel phenylamineâ€based oxime ester photoinitiators for <scp>LED</scp> â€induced free radical, cationic, and hybrid polymerization. Journal of Polymer Science, 2021, 59, 1711-1723.	3.8	18
295	Coinitiators Based on Group 14 Elements in Photoinitiating Systems for Radical and Cationic Polymerization Macromolecules, 2009, 42, 4464-4469.	4.8	17
296	Design of novel photobase generators upon violet LEDs and use in photopolymerization reactions. Polymer, 2017, 124, 151-156.	3.8	17
297	Metal Acetylacetonate–Bidentate Ligand Interaction (MABLI) as highly efficient free radical generating systems for polymer synthesis. Polymer Chemistry, 2018, 9, 1371-1378.	3.9	17
298	New Synthetic Route to an Highly Efficient Photoredox Catalyst by Mechanosynthesis. ACS Omega, 2018, 3, 10938-10944.	3.5	17
299	lodonium sulfonates as highâ€performance coinitiators and additives for CQâ€based systems: Toward aromatic amineâ€free photoinitiating systems. Journal of Polymer Science Part A, 2019, 57, 1664-1669.	2.3	17
300	Aryliodonium Ylides as Novel and Efficient Additives for Radical Chemistry: Example in Camphorquinone (CQ)/Amine Based Photoinitiating Systems. Molecules, 2019, 24, 2913.	3.8	17
301	Sulfinates and sulfonates as high performance co-initiators in CQ based systems: Towards aromatic amine-free systems for dental restorative materials. Dental Materials, 2020, 36, 187-196.	3.5	17
302	Safe near infrared light for fast polymers surface sterilization using organic heaters. Materials Chemistry Frontiers, 2022, 6, 1172-1179.	5.9	17
303	Chapter 8. Recent advances in photoinduced polymerization reactions under 400–700 nm light. Photochemistry, 2014, , 215-232.	0.2	16
304	Blue LED light-sensitive benzo pyrazolo (or imidazo) isoquinolinone derivatives in high-performance photoinitiating systems for polymerization reactions. Journal of Polymer Science Part A, 2015, 53, 567-575.	2.3	16
305	ZnO nanoparticles as polymerisation photo-initiator: Levulinic acid/NaOH content variation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 532, 189-194.	4.7	16
306	Development of Novel Photoinitiators as Substitutes of Camphorquinone for the LED Induced Polymerization of Methacrylates: A Bis‧ilyl Ketone. Macromolecular Rapid Communications, 2017, 38, 1600470.	3.9	16

#	Article	IF	CITATIONS
307	Ultrafast Epoxy–Amine Photopolyaddition. Macromolecules, 2018, 51, 10230-10236.	4.8	16
308	Radical Cations in Versatile High Performance Initiating Systems for Thermal, Redox, and Photopolymerizations. Macromolecules, 2018, 51, 8899-8911.	4.8	16
309	Charge-Transfer Complexes as New Inhibitors/Photoinitiators for On-Demand Amine/Peroxide Redox Polymerization. ACS Omega, 2018, 3, 6827-6832.	3.5	16
310	1â€Arylâ€2â€(triisopropylsilyl)ethaneâ€1,2â€diones: Toward a New Class of Visible Type I Photoinitiators for Free Radical Polymerization of Methacrylates. Macromolecular Rapid Communications, 2019, 40, 1900319.	3.9	16
311	A water soluble and highly reactive bisphosphonate functionalized thioxanthone-based photoinitiator. European Polymer Journal, 2020, 135, 109906.	5.4	16
312	Plasmon-triggered living photopolymerization for elaboration of hybrid polymer/metal nanoparticles. Materials Today, 2020, 40, 38-47.	14.2	16
313	2â€Oxoâ€2(tert â€butyldimethylsilyl)Acetic Acid (DKSiâ€COOH) as a New Waterâ€Soluble Visible Light Type I Photoinitiator for Free Radical Polymerization. Macromolecular Chemistry and Physics, 2020, 221, 1900495.	2.2	16
314	Organocatalytic PET-RAFT polymerization with a low ppm of organic photocatalyst under visible light. Polymer Chemistry, 2022, 13, 209-219.	3.9	16
315	A Second-Generation Chameleon N-Heterocyclic Carbene–Borane Coinitiator for the Visible-Light Oxygen-Resistant Photopolymerization of Both Organic and Water-Compatible Resins. Macromolecules, 2018, 51, 9730-9739.	4.8	15
316	1,2â€Diketones as photoinitiators of both cationic and freeâ€radical photopolymerization under UV (392 nm) or Blue (455 nm) LEDs. Journal of Polymer Science, 2020, 58, 792-802.	3.8	15
317	High performance dyes based on triphenylamine, cinnamaldehyde and indane-1,3-dione derivatives for blue light induced polymerization for 3D printing and photocomposites. Dyes and Pigments, 2020, 182, 108580.	3.7	15
318	Imidazole based dual photo/thermal initiators for highly efficient radical polymerization under air with a metal-free approach. Polymer Chemistry, 2021, 12, 6386-6391.	3.9	15
319	Zinc complex based photoinitiating systems for acrylate polymerization under air; in situ formation of Zn-based fillers and composites. Polymer Chemistry, 2014, 5, 6569-6576.	3.9	14
320	A Critical Review for Synergic Kinetics and Strategies for Enhanced Photopolymerizations for 3D-Printing and Additive Manufacturing. Polymers, 2021, 13, 2325.	4.5	14
321	Towards new NIR dyes for free radical photopolymerization processes. Beilstein Journal of Organic Chemistry, 2021, 17, 2067-2076.	2.2	14
322	How to overcome the light penetration issue in photopolymerization? An example for the preparation of high content iron-containing opaque composites and application in 3D printing. European Polymer Journal, 2022, 165, 111011.	5.4	14
323	Non-vertical energy transfer to oximes: role of structural changes. Physical Chemistry Chemical Physics, 2001, 3, 2721-2722.	2.8	13
324	Homogenous photopolymerization of acrylic monomers initiated with ZnO-methacrylate in non-aqueous medium and production of luminescent nanocomposites. Polymer Chemistry, 2018, 9, 828-833.	3.9	13

#	Article	IF	CITATIONS
325	Metal Acetylacetonate–Bidentate Ligand Interaction (MABLI) (Photo)activated Polymerization: Toward High Performance Amine-Free, Peroxide-Free Redox Radical (Photo)initiating Systems. Macromolecules, 2018, 51, 2706-2715.	4.8	13
326	Citral Photodegradation in Solution: Highlighting of a Radical Pathway in Parallel to Cyclization Pathway. Journal of Agricultural and Food Chemistry, 2019, 67, 3752-3760.	5.2	13
327	Silane/iodonium salt as redox/thermal/photoinitiating systems in radical and cationic polymerizations for laser write and composites. Polymer Chemistry, 2020, 11, 857-866.	3.9	13
328	Laser Direct Writing of Arbitrary Complex Polymer Microstructures by Nitroxide-Mediated Photopolymerization. ACS Applied Materials & amp; Interfaces, 2020, 12, 30779-30786.	8.0	13
329	Influence of Electronic Effects on the Reactivity of Triazolylideneâ€Boryl Radicals: Consequences for the use of Nâ€Heterocyclic Carbene Boranes in Organic and Polymer Synthesis. Chemistry - A European Journal, 2015, 21, 13772-13777.	3.3	12
330	Performance analysis of the solidification of acrylic esters photo-initiated by systematically modified ZnO nanoparticles. Polymer, 2018, 158, 83-89.	3.8	12
331	Novel applications of fluorescent brighteners in aqueous visible-light photopolymerization: high performance water-based coating and LED-assisted hydrogel synthesis. Polymer Chemistry, 2018, 9, 3952-3958.	3.9	12
332	Silane Based Redox Initiating Systems: Toward a Safer Amine-Free, Peroxide-Free, and Metal-Free Approach. Macromolecules, 2019, 52, 3351-3358.	4.8	12
333	Photopolymerization of Zeolite Fillerâ€Based Composites for Potential 3D Printing Application and Gas Adsorption Applications. Advanced Materials Technologies, 2022, 7, 2100869.	5.8	12
334	Novel Copper Complexes as Visible Light Photoinitiators for the Synthesis of Interpenetrating Polymer Networks (IPNs). Polymers, 2022, 14, 1998.	4.5	12
335	Thiophene Derivatives with Donor–π–Acceptor Structures for Enhanced Lightâ€Absorption Properties and Efficient Cationic Polymerization upon Green‣ight Irradiation. Macromolecular Chemistry and Physics, 2014, 215, 1514-1524.	2.2	11
336	Visible‣ight Emulsion Photopolymerization of Styrene. Angewandte Chemie, 2018, 130, 969-973.	2.0	11
337	Bisphosphonic Acidâ€Functionalized Waterâ€Soluble Photoinitiators. Macromolecular Chemistry and Physics, 2019, 220, 1900268.	2.2	11
338	Stable surface functionalization of carbonized mesoporous silicon. Inorganic Chemistry Frontiers, 2020, 7, 631-641.	6.0	11
339	Novel Copper Photoredox Catalysts for Polymerization: An In Situ Synthesis of Metal Nanoparticles. Polymers, 2020, 12, 2293.	4.5	11
340	Substituent Effects on Photoinitiation Ability of Monoaminoanthraquinoneâ€Based Photoinitiating Systems for Free Radical Photopolymerization under LEDs. Macromolecular Rapid Communications, 2020, 41, e2000166.	3.9	11
341	New bio-sourced hydrogen donors as high performance coinitiators and additives for CQ-based systems: Toward aromatic amine-free photoinitiating systems. European Polymer Journal, 2020, 134, 109794.	5.4	11
342	Light-Induced Thermal Decomposition of Alkoxyamines upon Infrared CO ₂ Laser: Toward Spatially Controlled Polymerization of Methacrylates in Laser Write Experiments. ACS Omega, 2020, 5, 3043-3046.	3.5	11

#	Article	IF	CITATIONS
343	Towards Visible LED Illumination: ZnOâ€ZnS Nanocomposite Particles. ChemistrySelect, 2020, 5, 985-987.	1.5	11
344	Characterization of polyoxometalate/polymer photoâ€composites: A toolbox for the photodegradation of organic pollutants. Journal of Polymer Science, 2021, 59, 153-169.	3.8	11
345	Naphthalic anhydride derivatives: Structural effects on their initiating abilities in radical and/or cationic photopolymerizations under visible light. Journal of Polymer Science Part A, 2015, 53, 2860-2866.	2.3	10
346	Peroxide-Free and Amine-Free Redox Free Radical Polymerization: Metal Acetylacetonates/Stable Carbonyl Compounds for Highly Efficient Synthesis of Composites. Macromolecules, 2018, 51, 6395-6404.	4.8	10
347	Thermal Initiators as Additives for Photopolymerization of Methacrylates upon Blue Light. Coatings, 2020, 10, 478.	2.6	10
348	In-silico based development of photoinitiators for 3D printing and composites: Search on the coumarin scaffold. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 400, 112698.	3.9	10
349	A New Phosphine for Efficient Free Radical Polymerization under Air. Macromolecular Rapid Communications, 2020, 41, e2000053.	3.9	10
350	Charge Transfer Complexes based on Various Amines as Dual Thermal and Photochemical Polymerization Initiators: A Powerful Tool for the Access to Composites. Journal of Polymer Science, 2020, 58, 811-823.	3.8	10
351	<i>N</i> -Aryl glycines as versatile initiators for various polymerizations. Polymer Chemistry, 2021, 12, 1991-2000.	3.9	10
352	Polymeric Iodonium Salts to Trigger Free Radical Photopolymerization. Macromolecular Rapid Communications, 2020, 41, 1900644.	3.9	10
353	Silyloxyamines as sources of silyl radicals: ESR spinâ€trapping, laser flash photolysis investigation, and photopolymerization ability. Journal of Physical Organic Chemistry, 2011, 24, 342-350.	1.9	9
354	Difluorination at Boron Leads to the First Electrophilic Ligated Boryl Radical (NHCâ€BF 2 .). Angewandte Chemie, 2018, 130, 10408-10413.	2.0	9
355	Silyl Glyoximides: Toward a New Class of Visible Light Photoinitiators. Macromolecular Chemistry and Physics, 2022, 223, .	2.2	9
356	Chemical engineering around the 5,12-dihydroindolo[3,2-a]carbazole scaffold: Fine tuning of the optical properties of visible light photoinitiators of polymerization. European Polymer Journal, 2022, 172, 111218.	5.4	9
357	H–Si Functionalized Silicon Surfaces and Powders as Photoinitiators of Polymerization. Macromolecular Materials and Engineering, 2010, 295, 351-354.	3.6	8
358	Effect of the Steric Hindrance and Branched Substituents on Visible Phenylamine Oxime Ester Photoinitiators: Photopolymerization Kinetics Investigation through Photoâ€ÐSC Experiments. Photochemistry and Photobiology, 2022, 98, 773-782.	2.5	8
359	Zeoliteâ€Reinforced Interpenetrating Polymer Network Initiated by Chalcone Based Photoinitiating System and Their Application in 3D/4D Printing. Advanced Materials Technologies, 2022, 7, .	5.8	8
360	Charge Transfer Complexes (CTCs) with Pyridinium Salts: Towards Efficient Dual Photochemical/Thermal Initiators and 3D Printing Applications. Macromolecular Rapid Communications, 2022, , 2200314.	3.9	8

#	Article	IF	CITATIONS
361	New Opportunities in Free Radical Photopolymerization and Free Radical Promoted Cationic Polymerization Based on the Silyl Radical Chemistry Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2009, 22, 587-590.	0.3	7
362	Bulk Polymerization Photoâ€Initiator ZnO: Increasing of the Benzoyl Formic Acid Concentration and LED Illumination. Macromolecular Chemistry and Physics, 2018, 219, 1800208.	2.2	7
363	Amphiphilic polymer coated nanodiamonds: a promising platform to deliver azonafide. Polymer Chemistry, 2019, 10, 1904-1911.	3.9	7
364	In Silico Design of Nitrocoumarins as Near-UV Photoinitiators: Toward Interesting Opportunities in Composites and 3D Printing Technologies. ACS Applied Polymer Materials, 2020, 2, 2890-2901.	4.4	7
365	Polydiacetylene (<scp>PDA</scp>) based supramolecular gel upon coassembly with a bolaamphiphilic cogelator. Polymers for Advanced Technologies, 2020, 31, 2640-2646.	3.2	7
366	New hydrogen donors for amine-free photoinitiating systems in dental materials. Dental Materials, 2021, 37, 382-390.	3.5	7
367	Photopolymerization of Pollen Based Biosourced Composites and Applications in 3D and 4D Printing. Macromolecular Materials and Engineering, 2021, 306, 2000774.	3.6	7
368	Development of a Borane–(Meth)acrylate Photo lick Reaction. Angewandte Chemie - International Edition, 2021, 60, 17037-17044.	13.8	7
369	How to Design Novel Photoinitiators for Blue Light. RSC Polymer Chemistry Series, 2018, , 179-199.	0.2	7
370	Nearâ€infrared â€induced photothermal decomposition of charge transfer complexes: A new way to initiate thermal polymerization. Journal of Polymer Science, 2020, 58, 2134-2139.	3.8	6
371	Photoinitiating systems based on poly(ethylene imine) for Michael addition and free radical photopolymerization. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 404, 112959.	3.9	6
372	Rhenium(I) N-Heterocyclic Carbene Complexes in Photoinitiating Systems for Polymerization upon Visible Light: Development of Photosensitive Resins for 3D and 4D Applications. ACS Applied Polymer Materials, 2021, 3, 464-473.	4.4	6
373	Visible-Light Emulsion Photopolymerization of Acrylates and Methacrylates: Mechanistic Insights and Introduction of a Simplified Sulfur-Based Photoinitiating System. Macromolecules, 2021, 54, 2124-2133.	4.8	6
374	Efficacy modeling of new multi-functional benzophenone-based system for free-radical/cationic hybrid-photopolymerization using 405Ânm LED. Journal of Polymer Research, 2022, 29, 1.	2.4	6
375	Generation and reactivity of a lactone derived radical. Chemical Physics Letters, 2006, 429, 282-285.	2.6	5
376	Design of New Amines of Low Toxicity for Efficient Free Radical Polymerization under Air. Macromolecular Chemistry and Physics, 2020, 221, 2000211.	2.2	5
377	High Performance Redox Initiating Systems Based on the Interaction of Silane with Metal Complexes: A Unique Platform for the Preparation of Composites. Molecules, 2020, 25, 1602.	3.8	5
378	Development of a Zeolite/Polymerâ€Based Hydrogel Composite through Photopolymerization for 3D Printing Application. Macromolecular Materials and Engineering, 2021, 306, 2100129.	3.6	5

#	Article	IF	CITATIONS
379	Benzophenoneâ€Functionalized Oligo(Amido Amine)/Iodonium Salt Systems as Visible Light Photoinitiators. ChemistrySelect, 2021, 6, 5743-5751.	1.5	5
380	Photostability of l-tryptophan in aqueous solution: Effect of atmosphere and antioxidants addition. Food Chemistry, 2021, 359, 129949.	8.2	5
381	Preparation of Iron Fillerâ€Based Photocomposites and Application in 3D Printing. Macromolecular Materials and Engineering, 2021, 306, 2000720.	3.6	5
382	Ultrafast Epoxyâ€Anhydride Photopolyaddition Reaction. Macromolecular Chemistry and Physics, 2020, 221, 2000236.	2.2	4
383	Cubane Cu ₄ 1 ₄ (phosphine) ₄ complexes as new co-initiators for free radical photopolymerization: towards aromatic amine-free systems. Polymer Chemistry, 2021, 12, 2848-2859.	3.9	4
384	Reactivity of Bâ€Xanthyl Nâ€Heterocyclic Carbeneâ€Boranes. Helvetica Chimica Acta, 2019, 102, e1900198.	1.6	3
385	Hydrogen donors to replace aromatic amine based photoinitiating systems. Nano Select, 2020, 1, 382-387.	3.7	3
386	Diphenylsilaneâ€Manganese Acetylacetonate Redox Initiating Systems: Toward Amineâ€Free and Peroxideâ€Free Systems. Macromolecular Chemistry and Physics, 2020, 221, 2000058.	2.2	3
387	New Pure Organic and Peroxide-Free Redox Initiating Systems for Polymerization in Mild Conditions. Polymers, 2021, 13, 301.	4.5	3
388	Nearâ€InfraredÂLight/Thermal Dualâ€Responsive Epoxyâ€Based Polydiacetylene Composite for 3D Printing. Advanced Materials Interfaces, 2021, 8, 2101481.	3.7	3
389	Comparison of pure epoxy vs. epoxy-anhydride photopolymerization. European Polymer Journal, 2022, 166, 111031.	5.4	3
390	Development of Water-Soluble Type I Photoinitiators for Hydrogel Synthesis. Macromol, 2022, 2, 131-140.	4.4	3
391	Peroxide-free redox initiating systems for polymerization in mild conditions. Polymer Chemistry, 2021, 12, 1816-1822.	3.9	2
392	A writable anilineâ€functionalized polydiacetylene composite with obvious colorimetric change upon both heating and near infrared lights irradiation. Polymers for Advanced Technologies, 2022, 33, 1021-1026.	3.2	2
393	Reactivity of Peroxyl Radicals towards Hydrogen Donors: A Kinetic ESR Investigation. Journal of Advanced Oxidation Technologies, 2009, 12, .	0.5	1
394	Efficacy Analysis of In Situ Synthesis of Nanogold via Copper/Iodonium/Amine/Gold System under a Visible Light. Polymers, 2021, 13, 4013.	4.5	1
395	Modeling the Enhanced Efficacy and Curing Depth of Photo-Thermal Dual Polymerization in Metal (Fe) Polymer Composites for 3D Printing. Polymers, 2022, 14, 1158.	4.5	1
396	Photothermal activation in the near infrared range for 4-dimensional printing using relevant organic dyes. Additive Manufacturing, 2022, 58, 103031.	3.0	1

JACQUES LALEVéE

#	Article	IF	CITATIONS
397	3-Hydroxyflavone and N-phenylglycine in High Performance Photoinitiating Systems for 3D Printing and Photocomposites Synthesis. Journal of Material Science & Engineering, 2018, 07, .	0.2	0
398	Development of a Borane–(Meth)acrylate Photo lick Reaction. Angewandte Chemie, 2021, 133, 17174-17181.	2.0	0
399	Polydiacetylene photocomposite material obtained by orthogonal chemistry: a detailed study at the mesoscopic scale. Materials Advances, 2022, 3, 2558-2567.	5.4	0
400	Improvement of color stability using a chelating agent in model soft beverages subjected to Fenton reaction. Journal of the Chinese Chemical Society, 2022, 69, 1096-1105.	1.4	0