Sonia Dsoke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2057491/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Electrochemical study on nickel aluminum layered double hydroxides as high-performance electrode material for lithium-ion batteries based on sodium alginate binder. Journal of Solid State Electrochemistry, 2022, 26, 49-61.	2.5	12
2	Highâ€Voltage Aqueous Mgâ€lon Batteries Enabled by Solvation Structure Reorganization. Advanced Functional Materials, 2022, 32, 2110674.	14.9	38
3	Foreword to the memorial issue for Professor Roberto Marassi. Journal of Solid State Electrochemistry, 2022, 26, 1-2.	2.5	2
4	Glyoxalâ€Based Electrolytes in Combination with Fe ₂ O ₃ @Câ€Based Electrodes for Lithiumâ€lon Batteries. Batteries and Supercaps, 2022, 5, .	4.7	3
5	Study on Na2V0.67Mn0.33Ti(PO4)3 electrodes with ultralow voltage hysteresis for high performance sodium-ion batteries. Chemical Engineering Journal, 2022, 444, 136608.	12.7	11
6	An asymmetric MnO2 activated carbon supercapacitor with highly soluble choline nitrate-based aqueous electrolyte for sub-zero temperatures. Electrochimica Acta, 2022, 425, 140708.	5.2	8
7	Investigation of "Na2/3Co2/3Ti1/3O2―as a multi-phase positive electrode material for sodium batteries. Journal of Power Sources, 2021, 481, 229120.	7.8	9
8	Study of Polyoxometalates as Electrode Materials for Lithiumâ€ion Batteries: Thermal Stability Paves the Way to Improved Cycle Stability. ChemElectroChem, 2021, 8, 656-664.	3.4	6
9	Electrochemical performance and reaction mechanism investigation of V ₂ O ₅ positive electrode material for aqueous rechargeable zinc batteries. Journal of Materials Chemistry A, 2021, 9, 16776-16786.	10.3	19
10	Impact of 3 yanopropionic Acid Methyl Ester on the Electrochemical Performance of ZnMn 2 O 4 as Negative Electrode for Liâ€ion Batteries. Energy Technology, 2021, 9, 2100247.	3.8	3
11	Study of the Lithium Storage Mechanism of Nâ€Đoped Carbonâ€Modified Cu ₂ S Electrodes for Lithiumâ€ion Batteries. Chemistry - A European Journal, 2021, 27, 13774-13782.	3.3	8
12	ZnS nanoparticles embedded in N-doped porous carbon xerogel as electrode materials for sodium-ion batteries. Journal of Alloys and Compounds, 2021, 877, 160299.	5.5	12
13	In operando study of orthorhombic V2O5 as positive electrode materials for K-ion batteries. Journal of Energy Chemistry, 2021, 62, 627-636.	12.9	12
14	Hybrid aqueous supercapacitors based on mesoporous spinel-analogous Zn-Ni-Co-O nanorods: Effect of Ni content on the structure and energy storage. Journal of Alloys and Compounds, 2021, 882, 160712.	5.5	10
15	Na ₃ V ₂ (PO ₄) ₃ ─A Highly Promising Anode and Cathode Material for Sodium-Ion Batteries. ACS Applied Energy Materials, 2021, 4, 12688-12695.	5.1	26
16	The role of nanomaterials for supercapacitors and hybrid devices. Frontiers of Nanoscience, 2021, 19, 99-136.	0.6	5
17	Effect of Continuous Capacity Rising Performed by FeS/Fe ₃ C/C Composite Electrodes for Lithiumâ€ion Batteries. ChemSusChem, 2020, 13, 986-995.	6.8	28
18	Interaction between Electrolytes and Sb ₂ O ₃ â€Based Electrodes in Sodium Batteries: Uncovering the Detrimental Effects of Diglyme. ChemElectroChem, 2020, 7, 3487-3495.	3.4	8

Sonia Dsoke

#	Article	IF	CITATIONS
19	Elucidating the Mechanism of Li Insertion into Fe _{1–<i>x</i>} S/Carbon <i>via In Operando</i> Synchrotron Studies. ACS Applied Materials & Interfaces, 2020, 12, 52691-52700.	8.0	9
20	Influence of phase variation of ZnMn ₂ O ₄ /carbon electrodes on cycling performances of Li-ion batteries. Inorganic Chemistry Frontiers, 2020, 7, 3657-3666.	6.0	5
21	Probing the Effect of Titanium Substitution on the Sodium Storage in Na3Ni2BiO6 Honeycomb-Type Structure. Energies, 2020, 13, 6498.	3.1	2
22	Benefits of Organoâ€Aqueous Binary Solvents for Redox Supercapacitors Based on Polyoxometalates. ChemElectroChem, 2020, 7, 2466-2476.	3.4	8
23	Investigation of N and S Co-doped Porous Carbon for Sodium-Ion Battery, Synthesized by Using Ammonium Sulphate for Simultaneous Activation and Heteroatom Doping. Journal of the Electrochemical Society, 2020, 167, 100531.	2.9	7
24	High Energy and High Power Lithiumâ€lon Hybrid Supercapacitors with Prolonged Cycle Life Based on Highâ€Rate Capability Materials: Li 4 Ti 5 O 12 , Activated Carbon, Li 3 V 1.95 Ni 0.05 (PO 4) 3 /C. ChemElectroChem, 2020, 7, 1631-1643.	3.4	4
25	Choosing the right carbon additive is of vital importance for high-performance Sb-based Na-ion batteries. Journal of Materials Chemistry A, 2020, 8, 6092-6104.	10.3	35
26	Mechanism Study of Carbon Coating Effects on Conversion-Type Anode Materials in Lithium-Ion Batteries: Case Study of ZnMn ₂ O ₄ and ZnO–MnO Composites. ACS Applied Materials & Interfaces, 2019, 11, 29888-29900.	8.0	18
27	One step <i>in situ</i> synthesis of ZnS/N and S co-doped carbon composites <i>via</i> salt templating for lithium-ion battery applications. New Journal of Chemistry, 2019, 43, 13038-13047.	2.8	9
28	Understanding the Lithium Storage Mechanism in Core–Shell Fe ₂ O ₃ @C Hollow Nanospheres Derived from Metal–Organic Frameworks: An In operando Synchrotron Radiation Diffraction and in operando X-ray Absorption Spectroscopy Study. Chemistry of Materials, 2019, 31, 5633-5645.	6.7	28
29	Electrochemical and Structural Investigation of Calcium Substituted Monoclinic Li ₃ V ₂ (PO ₄) ₃ Anode Materials for Li″on Batteries. Advanced Energy Materials, 2019, 9, 1901864.	19.5	19
30	Immobilization of Polyiodide Redox Species in Porous Carbon for Battery-Like Electrodes in Eco-Friendly Hybrid Electrochemical Capacitors. Nanomaterials, 2019, 9, 1413.	4.1	11
31	Aprotic and Protic Ionic Liquids Combined with Olive Pits Derived Hard Carbon for Potassium-Ion Batteries. Journal of the Electrochemical Society, 2019, 166, A3504-A3510.	2.9	21
32	<i>In Operando</i> analysis of the charge storage mechanism in a conversion ZnCo ₂ O ₄ anode and the application in flexible Li-ion batteries. Inorganic Chemistry Frontiers, 2019, 6, 1861-1872.	6.0	10
33	Synthesis and electrochemical properties of rGO/polypyrrole/ferrites nanocomposites obtained via a hydrothermal route for hybrid aqueous supercapacitors. Journal of Electroanalytical Chemistry, 2019, 845, 72-83.	3.8	54
34	Can Metallic Sodium Electrodes Affect the Electrochemistry of Sodiumâ€Ion Batteries? Reactivity Issues and Perspectives. ChemSusChem, 2019, 12, 3312-3319.	6.8	62
35	Are Functional Groups Beneficial or Harmful on the Electrochemical Performance of Activated Carbon Electrodes?. Journal of the Electrochemical Society, 2019, 166, A1004-A1014.	2.9	36
36	Understanding the Li-ion storage mechanism in a carbon composited zinc sulfide electrode. Journal of Materials Chemistry A, 2019, 7, 15640-15653.	10.3	48

#	Article	IF	CITATIONS
37	Evidence of a Pseudoâ€Capacitive Behavior Combined with an Insertion/Extraction Reaction Upon Cycling of the Positive Electrode Material P2â€Na _x Co _{0.9} Ti _{0.1} O ₂ for Sodiumâ€ion Batteries. ChemElectroChem. 2019. 6. 892-903.	3.4	18
38	<i>In Operando</i> Synchrotron Diffraction and <i>in Operando</i> X-ray Absorption Spectroscopy Investigations of Orthorhombic V ₂ O ₅ Nanowires as Cathode Materials for Mg-Ion Batteries. Journal of the American Chemical Society, 2019, 141, 2305-2315.	13.7	69
39	Electrochemical and structural investigations of different polymorphs of TiO2 in magnesium and hybrid lithium/magnesium batteries. Electrochimica Acta, 2018, 277, 20-29.	5.2	35
40	Expanding the Cathodic Potential Window of Activated Carbon Electrodes in a Lithiumâ€Salt Containing Electrolyte. Batteries and Supercaps, 2018, 1, 215-222.	4.7	7
41	Shift to Post-Li-Ion Capacitors: Electrochemical Behavior of Activated Carbon Electrodes in Li-, Na- and K-Salt Containing Organic Electrolytes. Journal of the Electrochemical Society, 2018, 165, A2807-A2814.	2.9	14
42	Elucidating the energy storage mechanism of ZnMn ₂ O ₄ as promising anode for Li-ion batteries. Journal of Materials Chemistry A, 2018, 6, 19381-19392.	10.3	57
43	Development of Non-Fluorinated Cathodes Based on Li ₃ V _{1.95} Ni _{0.05} (PO ₄) ₃ /C with Prolonged Cycle Life: A Comparison among Na-Alginate, Na-Carboxymethyl Cellulose and Poly(acrylic acid) Binders, Journal of the Electrochemical Society, 2017, 164, A672-A683.	2.9	9
44	Influence of the binder nature on the performance and cycle life of activated carbon electrodes in electrolytes containing Li-salt. Journal of Power Sources, 2017, 342, 301-312.	7.8	24
45	Electrochemical behavior and stability of a commercial activated carbon in various organic electrolyte combinations containing Li-salts. Electrochimica Acta, 2016, 218, 163-173.	5.2	47
46	The synergic effect of activated carbon and Li 3 V 1.95 Ni 0.05 (PO 4) 3 /C for the development of high energy and power electrodes. Electrochimica Acta, 2016, 219, 425-434.	5.2	20
47	The importance of the electrode mass ratio in a Li-ion capacitor based on activated carbon and Li4Ti5O12. Journal of Power Sources, 2015, 282, 385-393.	7.8	151
48	High rate capability Li3V2¬xNix(PO4)3/C (x = 0, 0.05, and 0.1) cathodes for Li-ion asymmetric supercapacitors. Journal of Materials Chemistry A, 2015, 3, 11807-11816.	10.3	34
49	Nano-structured Pt embedded in acidic salts of heteropolymolybdate matrices: MS EXAFS study. Nuclear Instruments & Methods in Physics Research B, 2015, 364, 65-69.	1.4	2
50	Electrocatalytic properties of platinum nanocenters electrogenerated at ultra-trace levels within zeolitic phosphododecatungstate cesium salt matrices. Journal of Solid State Electrochemistry, 2014, 18, 2993-3001.	2.5	3
51	Structural change of carbon supported Pt nanocatalyst subjected to a step-like potential cycling in PEM FC. Journal of Non-Crystalline Solids, 2014, 401, 169-174.	3.1	4
52	Strategies to reduce the resistance sources on Electrochemical Double Layer Capacitor electrodes. Journal of Power Sources, 2013, 238, 422-429.	7.8	74
53	Local Ordering Changes in Pt–Co Nanocatalyst Induced by Fuel Cell Working Conditions. Journal of Physical Chemistry C, 2012, 116, 12791-12802	3.1	25
54	Rotating disk electrode study of Cs2.5H0.5PW12O40 as mesoporous support for Pt nanoparticles for PEM fuel cells electrodes. Journal of Power Sources, 2011, 196, 10591-10600.	7.8	27

Sonia Dsoke

#	Article	IF	CITATIONS
55	Rotating disc electrode study of Pt-Co-Cs2.5PW12O40 composite electrodes toward oxygen reduction reaction. International Journal of Hydrogen Energy, 2011, 36, 8098-8102.	7.1	18
56	Low-temperature behavior of graphite–tin composite anodes for Li-ion batteries. Journal of Power Sources, 2010, 195, 7090-7097.	7.8	102
57	Activation of carbon-supported platinum nanoparticles by zeolite-type cesium salts of polyoxometallates of molybdenum and tungsten towards more efficient electrocatalytic oxidation of methanol and ethanol. Journal of Electroanalytical Chemistry, 2010, 649, 238-247.	3.8	33
58	Interfacial Properties of Copperâ€coated Graphite Electrodes: Coating Thickness Dependence. Fuel Cells, 2009, 9, 264-268.	2.4	21
59	Lithium intercalation and interfacial kinetics of composite anodes formed by oxidized graphite and copper. Journal of Power Sources, 2009, 190, 141-148.	7.8	74
60	An XAS experimental approach to study low Pt content electrocatalysts operating in PEM fuel cells. Physical Chemistry Chemical Physics, 2009, 11, 9987.	2.8	41
61	Pt–Co cathode electrocatalyst behaviour viewed by in situ XAFS fuel cell measurements. Journal of Power Sources, 2008, 178, 603-609.	7.8	27
62	Electrochemical investigation of polarization phenomena and intercalation kinetics of oxidized graphite electrodes coated with evaporated metal layers. Journal of Power Sources, 2008, 180, 845-851.	7.8	46
63	Temperature and potential-dependent structural changes in a Pt cathode electrocatalyst viewed by in situ XAFS. Journal of Non-Crystalline Solids, 2008, 354, 4227-4232.	3.1	16
64	Correlation of Ac-Impedance and In Situ X-ray Spectra of LiCoO2. Journal of Physical Chemistry B, 2006, 110, 11310-11313.	2.6	46
65	An ac impedance spectroscopic study of Mg-doped LiCoO2 at different temperatures: electronic and ionic transport properties. Electrochimica Acta, 2005, 50, 2307-2313.	5.2	71
66	Metal-oxidized graphite composite electrodes for lithium-ion batteries. Electrochimica Acta, 2005, 51, 536-544.	5.2	54