
Sally C Martin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2057183/publications.pdf Version: 2024-02-01

#	ARTICLE	IF	CITATIONS
1	Rapid and Efficient Generation of Myelinating Human Oligodendrocytes in Organoids. Frontiers in Cellular Neuroscience, 2021, 15, 631548.	3.7	40
2	Radial contractility of actomyosin rings facilitates axonal trafficking and structural stability. Journal of Cell Biology, 2020, 219, .	5.2	45
3	ENA/VASP proteins regulate exocytosis by mediating myosin VI-dependent recruitment of secretory granules to the cortical actin network. Molecular and Cellular Neurosciences, 2017, 84, 100-111.	2.2	4
4	Botulinum neurotoxin type-A enters a non-recycling pool of synaptic vesicles. Scientific Reports, 2016, 6, 19654.	3.3	32
5	Flux of signalling endosomes undergoing axonal retrograde transport is encoded by presynaptic activity and TrkB. Nature Communications, 2016, 7, 12976.	12.8	59
6	Extracellular vesicles secreted by highly metastatic clonal variants of osteosarcoma preferentially localize to the lungs and induce metastatic behaviour in poorly metastatic clones. Oncotarget, 2016, 7, 43570-43587.	1.8	38
7	A Mutant Tat Protein Inhibits HIV-1 Reverse Transcription by Targeting the Reverse Transcription Complex. Journal of Virology, 2015, 89, 4827-4836.	3.4	16
8	An Acto-Myosin II Constricting Ring Initiates the Fission of Activity-Dependent Bulk Endosomes in Neurosecretory Cells. Journal of Neuroscience, 2015, 35, 1380-1389.	3.6	43
9	Activity-driven relaxation of the cortical actomyosin II network synchronizes Munc18-1-dependent neurosecretory vesicle docking. Nature Communications, 2015, 6, 6297.	12.8	67
10	Control of Autophagosome Axonal Retrograde Flux by Presynaptic Activity Unveiled Using Botulinum Neurotoxin Type A. Journal of Neuroscience, 2015, 35, 6179-6194.	3.6	122
11	Increased Polyubiquitination and Proteasomal Degradation of a Munc18-1 Disease-Linked Mutant Causes Temperature-Sensitive Defect in Exocytosis. Cell Reports, 2014, 9, 206-218.	6.4	49
12	Caveolin-1 Is Necessary for Hepatic Oxidative Lipid Metabolism: Evidence for Crosstalk between Caveolin-1 and Bile Acid Signaling. Cell Reports, 2013, 4, 238-247.	6.4	56
13	Secretagogue Stimulation of Neurosecretory Cells Elicits Filopodial Extensions Uncovering New Functional Release Sites. Journal of Neuroscience, 2013, 33, 19143-19153.	3.6	21
14	Caveolae, lipid droplets, and adipose tissue biology: pathophysiological aspects. Hormone Molecular Biology and Clinical Investigation, 2013, 15, 11-18.	0.7	15
15	The Munc18-1 domain 3a loop is essential for neuroexocytosis but not for syntaxin-1A transport to the plasma membrane. Journal of Cell Science, 2013, 126, 2353-2360.	2.0	47
16	Myosin VI small insert isoform maintains exocytosis by tethering secretory granules to the cortical actin. Journal of Cell Biology, 2013, 200, 301-320.	5.2	68
17	Inhibition of PIKfyve by YM-201636 Dysregulates Autophagy and Leads to Apoptosis-Independent Neuronal Cell Death. PLoS ONE, 2013, 8, e60152.	2.5	66
18	Myosin VI small insert isoform maintains exocytosis by tethering secretory granules to the cortical actin. Journal of General Physiology, 2013, 141, i5-i5.	1.9	0

SALLY C MARTIN

#	Article	IF	CITATIONS
19	Postlipolytic insulin-dependent remodeling of micro lipid droplets in adipocytes. Molecular Biology of the Cell, 2012, 23, 1826-1837.	2.1	59
20	Co-Regulation of Cell Polarization and Migration by Caveolar Proteins PTRF/Cavin-1 and Caveolin-1. PLoS ONE, 2012, 7, e43041.	2.5	49
21	Caveolin-1 orchestrates the balance between glucose and lipid-dependent energy metabolism: Implications for liver regeneration. Hepatology, 2012, 55, 1574-1584.	7.3	82
22	Caveolin-1 Deficiency Leads to Increased Susceptibility to Cell Death and Fibrosis in White Adipose Tissue: Characterization of a Lipodystrophic Model. PLoS ONE, 2012, 7, e46242.	2.5	45
23	High-Throughput Screening of Australian Marine Organism Extracts for Bioactive Molecules Affecting the Cellular Storage of Neutral Lipids. PLoS ONE, 2011, 6, e22868.	2.5	8
24	Dynamin Inhibition Blocks Botulinum Neurotoxin Type A Endocytosis in Neurons and Delays Botulism. Journal of Biological Chemistry, 2011, 286, 35966-35976.	3.4	134
25	Heterofibrins: inhibitors of lipid droplet formation from a deep-water southern Australian marine sponge, Spongia (Heterofibria) sp Organic and Biomolecular Chemistry, 2010, 8, 3188.	2.8	22
26	Quantitative Analysis of Lipid Droplet Fusion: Inefficient Steady State Fusion but Rapid Stimulation by Chemical Fusogens. PLoS ONE, 2010, 5, e15030.	2.5	77
27	Spatiotemporal Regulation of Early Lipolytic Signaling in Adipocytes. Journal of Biological Chemistry, 2009, 284, 32097-32107.	3.4	34
28	Nucleophosmin and Nucleolin Regulate K-Ras Plasma Membrane Interactions and MAPK Signal Transduction. Journal of Biological Chemistry, 2009, 284, 28410-28419.	3.4	61
29	Lipid droplet-organelle interactions; sharing the fats. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2009, 1791, 441-447.	2.4	218
30	Characterization of Rab18, a Lipid Droplet–Associated Small GTPase. Methods in Enzymology, 2008, 438, 109-129.	1.0	42
31	PTRF-Cavin, a Conserved Cytoplasmic Protein Required for Caveola Formation and Function. Cell, 2008, 132, 113-124.	28.9	647
32	Lipid droplets: a unified view of a dynamic organelle. Nature Reviews Molecular Cell Biology, 2006, 7, 373-378.	37.0	1,036
33	Caveolae and cell swelling. Focus on "Stimulation by caveolin-1 of the hypotonicity-induced release of taurine and ATP at basolateral, but not apical, membrane of Caco-2 cells― American Journal of Physiology - Cell Physiology, 2006, 290, C1273-C1274.	4.6	1
34	Aberrant dysferlin trafficking in cells lacking caveolin or expressing dystrophy mutants of caveolin-3. Human Molecular Genetics, 2006, 15, 129-142.	2.9	66
35	A Novel Hook-Related Protein Family and the Characterization of Hook-Related Protein 1. Traffic, 2005, 6, 442-458.	2.7	67
36	Cholesterol and Fatty Acids Regulate Dynamic Caveolin Trafficking through the Golgi Complex and between the Cell Surface and Lipid Bodies. Molecular Biology of the Cell, 2005, 16, 2091-2105.	2.1	184

SALLY C MARTIN

#	Article	IF	CITATIONS
37	Regulated Localization of Rab18 to Lipid Droplets. Journal of Biological Chemistry, 2005, 280, 42325-42335.	3.4	257
38	Caveolin, cholesterol, and lipid bodies. Seminars in Cell and Developmental Biology, 2005, 16, 163-174.	5.0	160
39	Dynamic and Regulated Association of Caveolin with Lipid Bodies: Modulation of Lipid Body Motility and Function by a Dominant Negative Mutant. Molecular Biology of the Cell, 2004, 15, 99-110.	2.1	185
40	GLUT4 Overexpression or Deficiency in Adipocytes of Transgenic Mice Alters the Composition of GLUT4 Vesicles and the Subcellular Localization of GLUT4 and Insulin-responsive Aminopeptidase. Journal of Biological Chemistry, 2004, 279, 21598-21605.	3.4	52
41	GLUT4 Recycles via atrans-Golgi Network (TGN) Subdomain Enriched in Syntaxins 6 and 16 But Not TGN38: Involvement of an Acidic Targeting Motif. Molecular Biology of the Cell, 2003, 14, 973-986.	2.1	192
42	Flotillin-1/Reggie-2 Traffics to Surface Raft Domains via a Novel Golgi-independent Pathway. Journal of Biological Chemistry, 2002, 277, 48834-48841.	3.4	200
43	GS15 Forms a SNARE Complex with Syntaxin 5, GS28, and Ykt6 and Is Implicated in Traffic in the Early Cisternae of the Golgi Apparatus. Molecular Biology of the Cell, 2002, 13, 3493-3507.	2.1	111
44	The Role of Ca2+ in Insulin-stimulated Glucose Transport in 3T3-L1 Cells. Journal of Biological Chemistry, 2001, 276, 27816-27824.	3.4	135
45	The cytosolic C-terminus of the glucose transporter GLUT4 contains an acidic cluster endosomal targeting motif distal to the dileucine signal. Biochemical Journal, 2000, 350, 99.	3.7	23
46	Adipsin and the Glucose Transporter GLUT4 Traffic to the Cell Surface via Independent Pathways in Adipocytes. Traffic, 2000, 1, 141-151.	2.7	43
47	Biogenesis of Insulin-Responsive GLUT4 Vesicles is Independent of Brefeldin A-Sensitive Trafficking. Traffic, 2000, 1, 652-660.	2.7	44
48	The cytosolic C-terminus of the glucose transporter GLUT4 contains an acidic cluster endosomal targeting motif distal to the dileucine signal. Biochemical Journal, 2000, 350, 99-107.	3.7	84
49	GLUT4 trafficking in insulin-sensitive cells. Cell Biochemistry and Biophysics, 1999, 30, 89-113.	1.8	26
50	Intracellular Localization of Phosphatidylinositide 3-kinase and Insulin Receptor Substrate-1 in Adipocytes: Potential Involvement of a Membrane Skeleton. Journal of Cell Biology, 1998, 140, 1211-1225.	5.2	171
51	Distinct localization of renin and GLUT-4 in juxtaglomerular cells of mouse kidney. American Journal of Physiology - Renal Physiology, 1998, 274, F26-F33.	2.7	6
52	Mutational analysis of the carboxy-terminal phosphorylation site of GLUT-4 in 3T3-L1 adipocytes. American Journal of Physiology - Endocrinology and Metabolism, 1998, 275, E412-E422.	3.5	9
53	Glucose Transporter (GLUT-4) Is Targeted to Secretory Granules in Rat Atrial Cardiomyocytes. Journal of Cell Biology, 1997, 137, 1243-1254.	5.2	73
54	The glucose transporter (GLUT-4) and vesicle-associated membrane protein-2 (VAMP-2) are segregated from recycling endosomes in insulin-sensitive cells Journal of Cell Biology, 1996, 134, 625-635.	5.2	200

#	Article	IF	CITATIONS
55	Growth factor-induced stimulation of hexose transport in 3T3-L1 adipocytes: Evidence that insulin-induced translocation of glut4 is independent of activation of MAP kinase. Cellular Signalling, 1994, 6, 313-320.	3.6	28
56	Mammalian glucose transporters: intracellular signalling and transporter translocation. Biochemical Society Transactions, 1994, 22, 664-667.	3.4	1
57	Regulation of the glucose transporter GLUTI in mammalian cells. Biochemical Society Transactions, 1994, 22, 814-817.	3.4	17