Jean-Pascal De Bandt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2056303/publications.pdf

Version: 2024-02-01

		567281	454955
32	1,260	15	30 g-index
papers	citations	h-index	g-index
32	32	32	2109
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Chemically Defined Formulas, Symbiotics and Cow's Milk Protein Allergy. Nutrients, 2022, 14, 299.	4.1	Ο
2	Creatinine-to-cystatin C ratio and bioelectrical impedance analysis for the assessement of low lean body mass in cancer patients: Comparison to L3–computed tomography scan. Nutrition, 2021, 81, 110895.	2.4	32
3	Assessment of transthyretin cut-off values for a better screening of malnutrition: Retrospective determination and prospective validation. Clinical Nutrition, 2021, 40, 907-911.	5.0	4
4	Obesity, Nutrients and the Immune System in the Era of COVID-19. Nutrients, 2021, 13, 610.	4.1	15
5	Combined effect of citrulline and lactoserum on amino acid availability in aged rats. Nutrition, 2021, 87-88, 111196.	2.4	0
6	Hypermetabolism is an independent prognostic factor of survival in metastatic non-small cell lung cancer patients. Clinical Nutrition, 2020, 39, 1893-1899.	5.0	16
7	Effect of citrulline on muscle protein turnover in an in vitro model of muscle catabolism. Nutrition, 2020, 71, 110597.	2.4	5
8	Is N-Carbamoyl Putrescine, the Decarboxylation Derivative of Citrulline, a Regulator of Muscle Protein Metabolism in Rats?. Nutrients, 2019, 11, 2637.	4.1	2
9	Citrulline production and protein homeostasis. Current Opinion in Clinical Nutrition and Metabolic Care, 2019, 22, 371-376.	2.5	8
10	Lean Body Mass and Endocrine Status But Not Age Are Determinants of Resting Energy Expenditure in Patients with Non-Small Cell Lung Cancer. Annals of Nutrition and Metabolism, 2019, 75, 223-230.	1.9	4
11	Resting energy expenditure in the risk assessment of anticancer treatments. Clinical Nutrition, 2018, 37, 558-565.	5.0	25
12	Transthyretin for the routine assessment of malnutrition: A clinical dilemma highlighted by an international survey of experts in the field. Clinical Nutrition, 2018, 37, 2226-2229.	5.0	13
13	Muscle Loss in Chronic Liver Diseases: The Example of Nonalcoholic Liver Disease. Nutrients, 2018, 10, 1195.	4.1	39
14	Are heterozygous carriers for hereditary fructose intolerance predisposed to metabolic disturbances when exposed to fructose?. American Journal of Clinical Nutrition, 2018, 108, 292-299.	4.7	9
15	Oral arginine supplementation protects female mice from the onset of non-alcoholic steatohepatitis. Amino Acids, 2017, 49, 1215-1225.	2.7	34
16	Comment on Adam et al. Metformin Effect on Nontargeted Metabolite Profiles in Patients With Type 2 Diabetes and in Multiple Murine Tissues. Diabetes 2016;65:3776–3785. Diabetes, 2017, 66, e1-e2.	0.6	2
17	Influence of an ω3-fatty acid–enriched enteral diet with and without added glutamine on the metabolic response to injury in a rat model of prolonged acute catabolism. Nutrition, 2017, 42, 75-81.	2.4	4
18	Citrulline decreases hepatic endotoxin-induced injury in fructose-induced non-alcoholic liver disease: an <i>ex vivo</i> study in the isolated perfused rat liver. British Journal of Nutrition, 2017, 117, 1487-1494.	2.3	8

JEAN-PASCAL DE BANDT

#	Article	IF	CITATIONS
19	Oral citrulline supplementation protects female mice from the development of non-alcoholic fatty liver disease (NAFLD). European Journal of Nutrition, 2017, 56, 2519-2527.	3.9	30
20	FructoseÂandÂNAFLD:ÂTheÂMultifacetedÂAspectsÂof FructoseÂMetabolism. Nutrients, 2017, 9, 230.	4.1	175
21	Preventive effects of citrulline on Western diet-induced non-alcoholic fatty liver disease in rats. British Journal of Nutrition, 2016, 116, 191-203.	2.3	72
22	Evaluation of a new concept of immune-enhancing diet in a model of head-injured rat with infectious complications: A proof of concept study. Clinical Nutrition, 2016, 35, 1291-1300.	5.0	6
23	Leucine and Mammalian Target of Rapamycin–Dependent Activation of Muscle Protein Synthesis in Aging. Journal of Nutrition, 2016, 146, 2616S-2624S.	2.9	42
24	Hepatic steatosis. Current Opinion in Clinical Nutrition and Metabolic Care, 2016, 19, 360-365.	2.5	7
25	Impact of qualitative and quantitative variations in nitrogen supply on catch-up growth in food-deprived-refed young rats. Clinical Nutrition, 2016, 35, 669-678.	5.0	3
26	Oral Glutamine Supplementation Protects Female Mice from Nonalcoholic Steatohepatitis. Journal of Nutrition, 2015, 145, 2280-2286.	2.9	27
27	Citrulline and Nonessential Amino Acids Prevent Fructose-Induced Nonalcoholic Fatty Liver Disease in Rats. Journal of Nutrition, 2015, 145, 2273-2279.	2.9	34
28	<i>In vitro</i> anti-inflammatory effects of citrulline on peritoneal macrophages in Zucker diabetic fatty rats. British Journal of Nutrition, 2015, 113, 120-124.	2.3	35
29	Intestinal microbiota in inflammation and insulin resistance: relevance to humans. Current Opinion in Clinical Nutrition and Metabolic Care, 2011, 14, 334-340.	2.5	57
30	The 2009 ESPEN Sir David Cuthbertson. Citrulline: A new major signaling molecule or just another player in the pharmaconutrition game?. Clinical Nutrition, 2010, 29, 545-551.	5.0	110
31	Polyamines: metabolism and implications in human diseases. Clinical Nutrition, 2005, 24, 184-197.	5.0	386
32	Branched-Chain Keto-Acids and Pyruvate in Blood: Measurement by HPLC with Fluorimetric Detection and Changes in Older Subjects. Clinical Chemistry, 2000, 46, 848-853.	3.2	56