
Mario F Wullimann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2056119/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A versatile transcription factor: Multiple roles of <i>orthopedia a</i> (<i>otpa</i>) beyond its restricted localization in dopaminergic systems of developing and adult zebrafish (<i>Danio rerio</i>) brains. Journal of Comparative Neurology, 2022, 530, 2537-2561.	1.6	3
2	Neural pathways of olfactory kin imprinting and kin recognition in zebrafish. Cell and Tissue Research, 2021, 383, 273-287.	2.9	17
3	Anatomy and function of retinorecipient arborization fields in zebrafish. Journal of Comparative Neurology, 2021, 529, 3454-3476.	1.6	28
4	<i>Sonic hedgehog</i> expression in zebrafish forebrain identifies the teleostean pallidal signaling center and shows preglomerular complex and posterior tubercular dopamine cells to arise from <i>shh</i> cells. Journal of Comparative Neurology, 2020, 528, 1321-1348.	1.6	25
5	Serotonin systems in three socially communicating teleost species, the grunting toadfish (Allenbatrachus grunniens), a South American marine catfish (Ariopsis seemanni), and the upside-down catfish (Synodontis nigriventris). Journal of Chemical Neuroanatomy, 2020, 104, 101708.	2.1	9
6	Neural origins of basal diencephalon in teleost fishes: Radial versus tangential migration. Journal of Morphology, 2020, 281, 1133-1141.	1.2	14
7	Adult islet1 Expression Outlines Ventralized Derivatives Along Zebrafish Neuraxis. Frontiers in Neuroanatomy, 2019, 13, 19.	1.7	22
8	The Mormyrid Optic Tectum Is a Topographic Interface for Active Electrolocation and Visual Sensing. Frontiers in Neuroanatomy, 2018, 12, 79.	1.7	13
9	Identification of accessory olfactory system and medial amygdala in the zebrafish. Scientific Reports, 2017, 7, 44295.	3.3	53
10	Vertebrate Sensory Systems and Brains: From Genes to Behavior. Brain, Behavior and Evolution, 2017, 90, 97-97.	1.7	0
11	Should we redefine the classic lateral pallium?. Journal of Comparative Neurology, 2017, 525, 1509-1513.	1.6	24
12	Names Matter: Commentary on Luis Puelles' Article. Brain, Behavior and Evolution, 2017, 90, 190-190.	1.7	4
13	Eppur Si Muove: Evidence for an External Granular Layer and Possibly Transit Amplification in the Teleostean Cerebellum. Frontiers in Neuroanatomy, 2016, 10, 49.	1.7	16
14	The Brain of the Archerfish Toxotes chatareus: A Nissl-Based Neuroanatomical Atlas and Catecholaminergic/Cholinergic Systems. Frontiers in Neuroanatomy, 2016, 10, 106.	1.7	28
15	Crypt cells are involved in kin recognition in larval zebrafish. Scientific Reports, 2016, 6, 24590.	3.3	52
16	Interpretation of Dataâ \in "How to Use the Atlas. , 2016, , 159-204.		0
17	Combinatorial analysis of calcium-binding proteins in larval and adult zebrafish primary olfactory system identifies differential olfactory bulb glomerular projection fields. Brain Structure and Function, 2015, 220, 1951-1970.	2.3	22
18	Molecular neuroanatomy and chemoarchitecture of the neurosecretory preopticâ€hypothalamic area in zebrafish larvae. Journal of Comparative Neurology, 2014, 522, 1542-1564.	1.6	136

MARIO F WULLIMANN

#	Article	IF	CITATIONS
19	Ancestry of basal ganglia circuits: New evidence in teleosts. Journal of Comparative Neurology, 2014, 522, 2013-2018.	1.6	36
20	The Central Nervous Organization of the Lateral Line System. Springer Handbook of Auditory Research, 2013, , 195-251.	0.7	11
21	Correlated basal expression of immediate early gene egr1 and tyrosine hydroxylase in zebrafish brain and downregulation in olfactory bulb after transitory olfactory deprivation. Journal of Chemical Neuroanatomy, 2012, 46, 51-66.	2.1	16
22	The long adventurous journey of rhombic lip cells in jawed vertebrates: a comparative developmental analysis. Frontiers in Neuroanatomy, 2011, 5, 27.	1.7	86
23	Basal Ganglia: Insights into Origins from Lamprey Brains. Current Biology, 2011, 21, R497-R500.	3.9	15
24	Differential expression of dopaminergic cell markers in the adult zebrafish forebrain. Journal of Comparative Neurology, 2011, 519, 576-598.	1.6	99
25	Phylotypic expression of the bHLH genes <i>Neurogenin2, Neurod</i> , and <i>Mash1</i> in the mouse embryonic forebrain. Journal of Comparative Neurology, 2010, 518, 851-871.	1.6	52
26	The zebrafish cerebellar upper rhombic lip generates tegmental hindbrain nuclei by longâ€distance migration in an evolutionary conserved manner. Journal of Comparative Neurology, 2010, 518, 2794-2817.	1.6	79
27	Two tyrosine hydroxylase genes in vertebrates. Molecular and Cellular Neurosciences, 2010, 43, 394-402.	2.2	157
28	Secondary neurogenesis and telencephalic organization in zebrafish and mice: a brief review. Integrative Zoology, 2009, 4, 123-133.	2.6	84
29	Axonal projections originating from raphe serotonergic neurons in the developing and adult zebrafish, <i>Danio rerio</i> , using transgenics to visualize rapheâ€specific <i>pet1</i> expression. Journal of Comparative Neurology, 2009, 512, 158-182.	1.6	134
30	An Evolutionary Interpretation of Teleostean Forebrain Anatomy. Brain, Behavior and Evolution, 2009, 74, 30-42.	1.7	213
31	Optimized Gal4 genetics for permanent gene expression mapping in zebrafish. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 13365-13370.	7.1	275
32	Evolution of the Posterior Tuberculum and Preglomerular Nuclear Complex. , 2009, , 1404-1413.		15
33	Early teleostean basal ganglia development visualized by Zebrafish <i>Dlx2a</i> , <i>Lhx6</i> , <i>Lhx7</i> , <i>Tbr2</i> (<i>eomesa</i>), and <i>GAD67</i> gene expression. Journal of Comparative Neurology, 2008, 507, 1245-1257.	1.6	133
34	Introduction to the Proceedings of the Fifth European Conference on Comparative Neurobiology: Evolution and the generation of novelties in the nervous system. Brain Research Bulletin, 2008, 75, 189-190.	3.0	0
35	A phylotypic stage in vertebrate brain development: GABA cell patterns in zebrafish compared with mouse. Journal of Comparative Neurology, 2006, 494, 620-634.	1.6	135
36	Secondary neurogenesis in the brain of the African clawed frog, <i>Xenopus laevis</i> , as revealed by PCNA, <i>Deltaâ€1</i> , <i>Neurogeninâ€relatedâ€1</i> , and <i>NeuroD</i> expression. Journal of Comparative Neurology, 2005, 489, 387-402.	1.6	61

MARIO F WULLIMANN

#	Article	IF	CITATIONS
37	The adult central nervous cholinergic system of a neurogenetic model animal, the zebrafish Danio rerio. Brain Research, 2004, 1011, 156-169.	2.2	180
38	Connections of the ventral telencephalon (subpallium) in the zebrafish (Danio rerio). Brain Research, 2004, 1011, 206-220.	2.2	194
39	Identification and morphogenesis of the eminentia thalami in the zebrafish. Journal of Comparative Neurology, 2004, 471, 37-48.	1.6	70
40	Teleostean and mammalian forebrains contrasted: Evidence from genes to behavior. Journal of Comparative Neurology, 2004, 475, 143-162.	1.6	453
41	Anatomy of neurogenesis in the early zebrafish brain. Developmental Brain Research, 2003, 140, 137-155.	1.7	124
42	BrdU-, neuroD (nrd)- and Hu-studies reveal unusual non-ventricular neurogenesis in the postembryonic zebrafish forebrain. Mechanisms of Development, 2002, 117, 123-135.	1.7	104
43	The teleostean forebrain: a comparative and developmental view based on early proliferation, Pax6 activity and catecholaminergic organization. Brain Research Bulletin, 2002, 57, 363-370.	3.0	158
44	Expression domains of neuroD (nrd) in the early postembryonic zebrafish brain. Brain Research Bulletin, 2002, 57, 377-379.	3.0	58
45	Connections of the ventral telencephalon and tyrosine hydroxylase distribution in the zebrafish brain (Danio rerio) lead to identification of an ascending dopaminergic system in a teleost. Brain Research Bulletin, 2002, 57, 385-387.	3.0	180
46	Development of the catecholaminergic system in the early zebrafish brain: an immunohistochemical study. Developmental Brain Research, 2002, 137, 89-100.	1.7	211
47	Expression of Zash-1a in the postembryonic zebrafish brain allows comparison to mouse Mash1 domains. Gene Expression Patterns, 2002, 1, 187-192.	0.8	43
48	Hypothalamic inferior lobe and lateral torus connections in a percomorph teleost, the red cichlid (Hemichromis lifalili). Journal of Comparative Neurology, 2002, 449, 43-64.	1.6	53
49	Detailed immunohistology of Pax6 protein and tyrosine hydroxylase in the early zebrafish brain suggests role of Pax6 gene in development of dopaminergic diencephalic neurons. Developmental Brain Research, 2001, 131, 173-191.	1.7	100
50	The teleostean (zebrafish) dopaminergic system ascending to the subpallium (striatum) is located in the basal diencephalon (posterior tuberculum). Brain Research, 2001, 889, 316-330.	2.2	433
51	Some forebrain connections of the gustatory system in the goldfishCarassius Auratus visualized by separate Dil application to the hypothalamic inferior lobe and the torus lateralis. , 1998, 394, 152-170.		75
52	Readiness of Zebrafish Brain Neurons to Regenerate a Spinal Axon Correlates with Differential Expression of Specific Cell Recognition Molecules. Journal of Neuroscience, 1998, 18, 5789-5803.	3.6	128
53	Major patterns of visual brain organization in teleosts and their relation to prehistoric events and the paleontological record. Paleobiology, 1997, 23, 101-114.	2.0	10
54	Axonal regrowth after spinal cord transection in adult zebrafish. Journal of Comparative Neurology, 1997, 377, 577-595.	1.6	359

MARIO F WULLIMANN

#	Article	IF	CITATIONS
55	The zebrafish brain: a neuroanatomical comparison with the goldfish. Anatomy and Embryology, 1996, 194, 187-203.	1.5	88
56	Descending Telencephalic Information Reaches Longitudinal Torus and Cerebellum via the Dorsal Preglomerular Nucleus in the Teleost Fish, <i>Pantodon buchholzi: </i> A Case of Neural Preaptation?. Brain, Behavior and Evolution, 1994, 44, 338-352.	1.7	33
57	Cranial Nerves of the Coelacanth, Latimeria chalumnae [Osteichthyes: Sarcopterygii: Actinistia], and Comparisons with Other Craniata.R. Glenn Northcutt , William E. Bemis. Quarterly Review of Biology, 1994, 69, 555-556.	0.1	0
58	Possible multiple evolution of indirect telencephalo-cerebellar pathways in teleosts: studies in Carassius auratus and Pantodon buchholzi. Cell and Tissue Research, 1993, 274, 447-455.	2.9	54
59	Is the nucleus corticalis of teleosts a new cholinergic central nervous system for vertebrates?. NeuroReport, 1992, 3, 33-35.	1.2	14
60	Histochemical, Connectional and Cytoarchitectonic Evidence for a Secondary Reduction of the Pretectum in the European Eel, <i>Anguilla anguilla: </i> A Case of Parallel Evolution. Brain, Behavior and Evolution, 1991, 38, 290-301.	1.7	7
61	Comparative Cytoarchitectonic Analysis of Some Visual Pretectal Nuclei in Teleosts (Part 1 of 2). Brain, Behavior and Evolution, 1991, 38, 92-104.	1.7	52
62	The valvula cerebelli of the spiny eel, Macrognathus aculeatus, receives primary lateral-line afferents from the rostrum of the upper jaw. Cell and Tissue Research, 1991, 266, 285-293.	2.9	8
63	The visually related posterior pretectal nucleus in the nonâ€percomorph teleost <i>Osteoglossum bicirrhosum</i> projects to the hypothalamus: A Dil study. Journal of Comparative Neurology, 1991, 312, 415-435.	1.6	46
64	Phylogeny of Putative Cholinergic Visual Pathways through the Pretectum to the Hypothalamus in Teleost Fish. Brain, Behavior and Evolution, 1990, 36, 14-29.	1.7	50
65	Visual and electrosensory circuits of the diencephalon in mormyrids: An evolutionary perspective. Journal of Comparative Neurology, 1990, 297, 537-552.	1.6	116
66	A direct cerebello-telencephalic projection in an electrosensory mormyrid fish. Brain Research, 1990, 520, 354-357.	2.2	27
67	Afferent connections of the valvula cerebelli in two teleosts, the common goldfish and the green sunfish. Journal of Comparative Neurology, 1989, 289, 554-567.	1.6	80
68	The tertiary gustatory center in sunfishes is not nucleus glomerulosus. Neuroscience Letters, 1988, 86, 6-10.	2.1	52
69	A double-label study of efferent projections from the Edinger-Westphal nucleus in goldfish and kelp bass. Neuroscience Letters, 1988, 93, 121-126.	2.1	8
70	The Visual System in Teleost Fishes: Morphological Patterns and Trends. , 1988, , 515-552.		80
71	Connections of the Corpus Cerebelli in the Green Sunfish and the Common Goldfish: A Comparison of Perciform and Cypriniform Teleosts. Brain, Behavior and Evolution, 1988, 32, 293-316.	1.7	137