Christophe Lamaze

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/205606/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cells Respond to Mechanical Stress by Rapid Disassembly of Caveolae. Cell, 2011, 144, 402-413.	13.5	791
2	Shiga toxin induces tubular membrane invaginations for its uptake into cells. Nature, 2007, 450, 670-675.	13.7	538
3	Interleukin 2 Receptors and Detergent-Resistant Membrane Domains Define a Clathrin-Independent Endocytic Pathway. Molecular Cell, 2001, 7, 661-671.	4.5	456
4	Cellular capsules as a tool for multicellular spheroid production and for investigating the mechanics of tumor progression in vitro. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 14843-14848.	3.3	367
5	Regulation of receptor-mediated endocytosis by Rho and Rac. Nature, 1996, 382, 177-179.	13.7	361
6	The Actin Cytoskeleton Is Required for Receptor-mediated Endocytosis in Mammalian Cells. Journal of Biological Chemistry, 1997, 272, 20332-20335.	1.6	351
7	AP-2/Eps15 Interaction Is Required for Receptor-mediated Endocytosis. Journal of Cell Biology, 1998, 140, 1055-1062.	2.3	318
8	Endophilin-A2 functions in membrane scission in clathrin-independent endocytosis. Nature, 2015, 517, 493-496.	13.7	276
9	The emergence of clathrin-independent pinocytic pathways. Current Opinion in Cell Biology, 1995, 7, 573-580.	2.6	271
10	Galectin-3 drives glycosphingolipid-dependent biogenesis of clathrin-independent carriers. Nature Cell Biology, 2014, 16, 592-603.	4.6	248
11	Actin Dynamics Drive Membrane Reorganization and Scission in Clathrin-Independent Endocytosis. Cell, 2010, 140, 540-553.	13.5	226
12	Clathrin Adaptor epsinR Is Required for Retrograde Sorting on Early Endosomal Membranes. Developmental Cell, 2004, 6, 525-538.	3.1	213
13	Clathrin-Dependent or Not: Is It Still the Question?. Traffic, 2002, 3, 443-451.	1.3	208
14	Extracellular ATP acts on P2Y2 purinergic receptors to facilitate HIV-1 infection. Journal of Experimental Medicine, 2011, 208, 1823-1834.	4.2	156
15	The retromer complex and clathrin define an early endosomal retrograde exit site. Journal of Cell Science, 2007, 120, 2022-2031.	1.2	152
16	The caveolae dress code: structure and signaling. Current Opinion in Cell Biology, 2017, 47, 117-125.	2.6	119
17	Stressing caveolae new role in cell mechanics. Trends in Cell Biology, 2012, 22, 381-389.	3.6	116
18	Clathrin-Coated Pits: Vive La Différence?. Traffic, 2007, 8, 970-982.	1.3	113

#	Article	IF	CITATIONS
19	Membrane Tension Orchestrates Rear Retraction in Matrix-Directed Cell Migration. Developmental Cell, 2019, 51, 460-475.e10.	3.1	112
20	Involvement of the Ubiquitin/Proteasome System in Sorting of the Interleukin 2 Receptor β Chain to Late Endocytic Compartments. Molecular Biology of the Cell, 2001, 12, 1293-1301.	0.9	110
21	Glycosylation-Dependent IFN-γR Partitioning in Lipid and Actin Nanodomains Is Critical for JAK Activation. Cell, 2016, 166, 920-934.	13.5	110
22	Stat-mediated Signaling Induced by Type I and Type II Interferons (IFNs) Is Differentially Controlled through Lipid Microdomain Association and Clathrin-dependent Endocytosis of IFN Receptors. Molecular Biology of the Cell, 2006, 17, 2896-2909.	0.9	107
23	Analysis of Articulation Between Clathrin and Retromer in Retrograde Sorting on Early Endosomes. Traffic, 2009, 10, 1868-1880.	1.3	106
24	Syntaxin 16 and syntaxin 5 are required for efficient retrograde transport of several exogenous and endogenous cargo proteins. Journal of Cell Science, 2007, 120, 1457-1468.	1.2	99
25	Persistent cell migration and adhesion rely on retrograde transport of β1Âintegrin. Nature Cell Biology, 2016, 18, 54-64.	4.6	93
26	Membrane trafficking and signaling: Two sides of the same coin. Seminars in Cell and Developmental Biology, 2012, 23, 154-164.	2.3	69
27	Caveolae: The FAQs. Traffic, 2020, 21, 181-185.	1.3	65
28	EHD2 is a mechanotransducer connecting caveolae dynamics with gene transcription. Journal of Cell Biology, 2018, 217, 4092-4105.	2.3	63
29	Rab7 Is Functionally Required for Selective Cargo Sorting at the Early Endosome. Traffic, 2014, 15, 309-326.	1.3	62
30	Complementation of a pathogenic <i>IFNGR2</i> misfolding mutation with modifiers of N-glycosylation. Journal of Experimental Medicine, 2008, 205, 1729-1737.	4.2	59
31	Interferon Gamma Receptor: The Beginning of the Journey. Frontiers in Immunology, 2013, 4, 267.	2.2	58
32	Dystrophy-associated caveolin-3 mutations reveal that caveolae couple IL6/STAT3 signaling with mechanosensing in human muscle cells. Nature Communications, 2019, 10, 1974.	5.8	55
33	Spatiotemporal control of interferon-induced JAK/STAT signalling and gene transcription by the retromer complex. Nature Communications, 2016, 7, 13476.	5.8	50
34	An Abl-FBP17 mechanosensing system couples local plasma membrane curvature and stress fiber remodeling during mechanoadaptation. Nature Communications, 2019, 10, 5828.	5.8	50
35	Differential requirement for the translocation of clostridial binary toxins: lota toxin requires a membrane potential gradient. FEBS Letters, 2007, 581, 1287-1296.	1.3	49
36	Interferon Receptor Trafficking and Signaling: Journey to the Cross Roads. Frontiers in Immunology, 2020, 11, 615603.	2.2	45

#	Article	IF	CITATIONS
37	Functionally different pools of Shiga toxin receptor, globotriaosyl ceramide, in HeLa cells. FEBS Journal, 2006, 273, 5205-5218.	2.2	43
38	Endocytosis and toxicity of clostridial binary toxins depend on a clathrin-independent pathway regulated by Rho-GDI. Cellular Microbiology, 2011, 13, 154-170.	1.1	40
39	A novel form of cell type-specific partial IFN-γR1 deficiency caused by a germ line mutation of the IFNGR1 initiation codon. Human Molecular Genetics, 2010, 19, 434-444.	1.4	36
40	Functional dissection of the retrograde Shiga toxin trafficking inhibitor Retro-2. Nature Chemical Biology, 2020, 16, 327-336.	3.9	36
41	Caveolae and cancer: A new mechanical perspective. Biomedical Journal, 2015, 38, 367.	1.4	36
42	Oxidative Stress Induces Caveolin 1 Degradation and Impairs Caveolae Functions in Skeletal Muscle Cells. PLoS ONE, 2015, 10, e0122654.	1.1	35
43	The Dynamin Chemical Inhibitor Dynasore Impairs Cholesterol Trafficking and Sterol-Sensitive Genes Transcription in Human HeLa Cells and Macrophages. PLoS ONE, 2011, 6, e29042.	1.1	35
44	ALG-2 interacting protein-X (Alix) is essential for clathrin-independent endocytosis and signaling. Scientific Reports, 2016, 6, 26986.	1.6	33
45	Palmitoylation of Interferon-α (IFN-α) Receptor Subunit IFNAR1 Is Required for the Activation of Stat1 and Stat2 by IFN-α. Journal of Biological Chemistry, 2009, 284, 24328-24340.	1.6	32
46	Dynamin is Involved in Endolysosomal Cholesterol Delivery to the Endoplasmic Reticulum: Role in Cholesterol Homeostasis. Traffic, 2006, 7, 811-823.	1.3	31
47	Interfering with interferon receptor sorting and trafficking: Impact on signaling. Biochimie, 2007, 89, 735-743.	1.3	30
48	Exon 32 Skipping of Dysferlin Rescues Membrane Repair in Patients' Cells. Journal of Neuromuscular Diseases, 2015, 2, 281-290.	1.1	29
49	AGAP2 regulates retrograde transport between early endosomes and the TGN. Journal of Cell Science, 2010, 123, 2381-2390.	1.2	27
50	Coupling of melanocyte signaling and mechanics by caveolae is required for human skin pigmentation. Nature Communications, 2020, 11, 2988.	5.8	27
51	Caveolae promote successful abscission by controlling intercellular bridge tension during cytokinesis. Science Advances, 2022, 8, eabm5095.	4.7	24
52	UBTD1 is a mechanoâ€regulator controlling cancer aggressiveness. EMBO Reports, 2019, 20, .	2.0	21
53	Membrane tension buffering by caveolae: a role in cancer?. Cancer and Metastasis Reviews, 2020, 39, 505-517.	2.7	18
54	Shiga toxin stimulates clathrin-independent endocytosis of VAMP2/3/8 SNARE proteins. Journal of Cell Science, 2015, 128, 2891-902.	1.2	16

#	Article	IF	CITATIONS
55	Mechanism of HCV's resistance to IFN-α in cell culture involves expression of functional IFN-α receptor 1. Virology Journal, 2011, 8, 351.	1.4	15
56	<scp>SNAP</scp> â€ŧag Based Proteomics Approach for the Study ofÂthe Retrograde Route. Traffic, 2012, 13, 914-925.	1.3	15
57	Rab12 Localizes to Shiga Toxinâ€Induced Plasma Membrane Invaginations and Controls Toxin Transport. Traffic, 2014, 15, 772-787.	1.3	15
58	Retrograde transport is not required for cytosolic translocation of the B-subunit of Shiga toxin. Journal of Cell Science, 2015, 128, 2373-2387.	1.2	15
59	A promotive effect for halofuginone on membrane repair and synaptotagmin-7 levels in muscle cells of dysferlin-null mice. Human Molecular Genetics, 2018, 27, 2817-2829.	1.4	15
60	Caveolae Contribute to the Apoptosis Resistance Induced by the α1A-Adrenoceptor in Androgen-Independent Prostate Cancer Cells. PLoS ONE, 2009, 4, e7068.	1.1	12
61	Glycolipid-dependent and lectin-driven transcytosis in mouse enterocytes. Communications Biology, 2021, 4, 173.	2.0	12
62	Intracellular trafficking of bacterial and plant protein toxins. , 2006, , 135-153.		9
63	Identification of a New Cholesterolâ€Binding Site within the IFNâ€ <i>γ</i> Receptor that is Required for Signal Transduction. Advanced Science, 2022, 9, e2105170.	5.6	9
64	EHD2 is a Predictive Biomarker of Chemotherapy Efficacy in Triple Negative Breast Carcinoma. Scientific Reports, 2020, 10, 7998.	1.6	5
65	Small Molecule Inhibitors of Interferonâ€Induced JAKâ€STAT Signalling. Angewandte Chemie - International Edition, 0, , .	7.2	5
66	Endocytose : chaque voie compte!. Medecine/Sciences, 2002, 18, 1126-1136.	0.0	3
67	Receptor lipid nanodomain partitioning and signaling. Cell Cycle, 2017, 16, 237-238.	1.3	3
68	Vasopressin-induced changes in receptor-mediated endocytosis of asialoglycoprotein in rat hepatocytes. Biology of the Cell, 1991, 73, 43-47.	0.7	2
69	Effects of vasopressin on receptor-mediated endocytosis of asialoglycoprotein by hepatocytes from normal and diabetic rats. Experimental Cell Research, 1992, 199, 223-228.	1.2	2
70	Membrane Tension Orchestrates Rear Retraction in Matrix Directed Cell Migration. SSRN Electronic Journal, 0, , .	0.4	1
71	Complementation of a pathogenicIFNGR2misfolding mutation with modifiers of N-glycosylation. Journal of Cell Biology, 2008, 182, i6-i6.	2.3	0
72	Small Molecule Inhibitors of Interferonâ€Induced JAKâ€STAT Signalling. Angewandte Chemie, 0, , .	1.6	0

5

#	Article	IF	CITATIONS
73	Inside Back Cover: Small Molecule Inhibitors of Interferonâ€Induced JAKâ€STAT Signalling (Angew. Chem.) Tj ETQ	q110 7.2	.784314 rgBT (0

74 Innenrücktitelbild: Small Molecule Inhibitors of Interferonâ€Induced JAKâ€STAT Signalling (Angew. Chem.) Tj ETQq0 0 0 rgBT /Overloc