List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/205428/publications.pdf Version: 2024-02-01

YOSSI YOVEL

#	Article	IF	CITATIONS
1	Mother bats facilitate pup navigation learning. Current Biology, 2022, 32, 350-360.e4.	3.9	12
2	A bio-mimetic miniature drone for real-time audio based short-range tracking. PLoS Computational Biology, 2022, 18, e1009936.	3.2	1
3	Re-examining extreme sleep duration in bats: implications for sleep phylogeny, ecology, and function. Sleep, 2022, 45, .	1.1	5
4	Free-ranging Van Gelder's bat <i>Bauerus dubiaquercus</i> (Chiroptera: Vespertilionidae) preying on dung beetles in southern Mexico. Mammalia, 2022, .	0.7	1
5	Induced bacterial sickness causes inflammation but not blood oxidative stress in Egyptian fruit bats (<i>Rousettus aegyptiacus</i>). , 2022, 10, coac028.		5
6	Functional daylight echolocation in highly visual bats. Current Biology, 2022, 32, R309-R310.	3.9	8
7	TrackUSF, a novel tool for automated ultrasonic vocalization analysis, reveals modified calls in a rat model of autism. BMC Biology, 2022, 20, .	3.8	4
8	Ear-Bot: Locust Ear-on-a-Chip Bio-Hybrid Platform. Sensors, 2021, 21, 228.	3.8	10
9	Fireflies produce ultrasonic clicks during flight as a potential aposematic anti-bat signal. IScience, 2021, 24, 102194.	4.1	10
10	Sick bats stay home alone: fruit bats practice social distancing when faced with an immunological challenge. Annals of the New York Academy of Sciences, 2021, 1505, 178-190.	3.8	17
11	Echolocating bats rely on an innate speed-of-sound reference. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	6
12	Acoustically eavesdropping bat predators take longer to capture katydid prey signalling in aggregation. Journal of Experimental Biology, 2021, 224, .	1.7	11
13	Fruit bats adjust their foraging strategies to urban environments to diversify their diet. BMC Biology, 2021, 19, 123.	3.8	14
14	Adaptive learning and recall of motor-sensory sequences in adult echolocating bats. BMC Biology, 2021, 19, 164.	3.8	2
15	Inner Hemispheric and Interhemispheric Connectivity Balance in the Human Brain. Journal of Neuroscience, 2021, 41, 8351-8361.	3.6	16
16	Urban bat pups take after their mothers and are bolder and faster learners than rural pups. BMC Biology, 2021, 19, 190.	3.8	5
17	Silence and reduced echolocation during flight are associated with social behaviors in male hoary bats (Lasiurus cinereus). Scientific Reports, 2021, 11, 18637.	3.3	14
18	Hearing, echolocation, and beam steering from day 0 in tongue-clicking bats. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20211714.	2.6	3

#	Article	IF	CITATIONS
19	Flight rapidly modulates body temperature in freely behaving bats. Animal Biotelemetry, 2021, 9, .	1.9	5
20	Movement responses of common noctule bats to the illuminated urban landscape. Landscape Ecology, 2020, 35, 189-201.	4.2	40
21	Echolocation at high intensity imposes metabolic costs on flying bats. Nature Ecology and Evolution, 2020, 4, 1174-1177.	7.8	40
22	Echolocating bats can adjust sensory acquisition based on internal cues. BMC Biology, 2020, 18, 166.	3.8	7
23	Echolocating bats detect but misperceive a multidimensional incongruent acoustic stimulus. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 28475-28484.	7.1	7
24	Reinforcement Learning Enables Resource Partitioning in Foraging Bats. Current Biology, 2020, 30, 4096-4102.e6.	3.9	32
25	Plants' ability to sense and respond to airborne sound is likely to be adaptive: reply to comment by Pyke et al. Ecology Letters, 2020, 23, 1423-1425.	6.4	0
26	Increased sugar concentration in response to a wide range of pollinator sounds can be adaptive for the plant: answer to Raguso <i>et al</i> . Ecology Letters, 2020, 23, 1553-1554.	6.4	0
27	Conservation of brain connectivity and wiring across the mammalian class. Nature Neuroscience, 2020, 23, 805-808.	14.8	68
28	Environmental reservoir dynamics predict global infection patterns and population impacts for the fungal disease white-nose syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 7255-7262.	7.1	53
29	The ontogeny of a mammalian cognitive map in the real world. Science, 2020, 369, 194-197.	12.6	56
30	Wing-Beat Frequency and Its Acoustics in Birds and Bats. Integrative and Comparative Biology, 2020, 60, 1080-1090.	2.0	5
31	Segregating signal from noise through movement in echolocating bats. Scientific Reports, 2020, 10, 382.	3.3	16
32	Decision making in foraging bats. Current Opinion in Neurobiology, 2020, 60, 169-175.	4.2	17
33	A sensorimotor model shows why a spectral jamming avoidance response does not help bats deal with jamming. ELife, 2020, 9, .	6.0	9
34	A new Werauhia (Tillandsioideae, Bromeliaceae) from Mexico with observations about its reproductive biology . Phytotaxa, 2020, 446, 128-134.	0.3	1
35	<p>Philodendron guadarramanum (Araceae), a new species from Tabasco, Mexico</p> . Phytotaxa, 2020, 468, 296-300.	0.3	0
36	Flowers respond to pollinator sound within minutes by increasing nectar sugar concentration. Ecology Letters, 2019, 22, 1483-1492.	6.4	79

#	Article	IF	CITATIONS
37	Food for Sex in Bats Revealed as Producer Males Reproduce with Scrounging Females. Current Biology, 2019, 29, 1895-1900.e3.	3.9	16
38	Acoustic evaluation of behavioral states predicted from GPS tracking: a case study of a marine fishing bat. Movement Ecology, 2019, 7, 21.	2.8	24
39	Integrating vision and echolocation for navigation and perception in bats. Science Advances, 2019, 5, eaaw6503.	10.3	32
40	Sound perception in plants. Seminars in Cell and Developmental Biology, 2019, 92, 134-138.	5.0	27
41	Ultrasound Imaging Reveals Accelerated In-utero Development of a Sensory Apparatus in Echolocating Bats. Scientific Reports, 2019, 9, 5275.	3.3	1
42	Using on-board sound recordings to infer behaviour of free-moving wild animals. Journal of Experimental Biology, 2019, 222, .	1.7	18
43	Sensory gaze stabilization in echolocating bats. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20191496.	2.6	13
44	The benefits of insect-swarm hunting to echolocating bats, and its influence on the evolution of bat echolocation signals. PLoS Computational Biology, 2019, 15, e1006873.	3.2	16
45	Coordinated change at the colony level in fruit bat fur microbiomes through time. Nature Ecology and Evolution, 2019, 3, 116-124.	7.8	51
46	Persistent producer-scrounger relationships in bats. Science Advances, 2018, 4, e1603293.	10.3	52
47	Resource Ephemerality Drives Social Foraging in Bats. Current Biology, 2018, 28, 3667-3673.e5.	3.9	104
48	A fully autonomous terrestrial bat-like acoustic robot. PLoS Computational Biology, 2018, 14, e1006406.	3.2	48
49	Neuroethology of bat navigation. Current Biology, 2018, 28, R997-R1004.	3.9	21
50	Investigation and analysis of an ultrasonic sensor for specific yield assessment and greenhouse features identification. Precision Agriculture, 2017, 18, 916-931.	6.0	5
51	Bats pre-adapt sensory acquisition according to target distance prior to takeoff even in the presence of closer background objects. Scientific Reports, 2017, 7, 467.	3.3	17
52	An annotated dataset of Egyptian fruit bat vocalizations across varying contexts and during vocal ontogeny. Scientific Data, 2017, 4, 170143.	5.3	26
53	Principles and Patterns of Bat Movements: From Aerodynamics to Ecology. Quarterly Review of Biology, 2017, 92, 267-287.	0.1	46
54	Bats Use Path Integration Rather Than Acoustic Flow to Assess Flight Distance along Flyways. Current Biology, 2017, 27, 3650-3657.e3.	3.9	12

#	Article	IF	CITATIONS
55	Bat Navigation. , 2017, , 333-345.		4
56	Crowd vocal learning induces vocal dialects in bats: Playback of conspecifics shapes fundamental frequency usage by pups. PLoS Biology, 2017, 15, e2002556.	5.6	47
57	Everyday bat vocalizations contain information about emitter, addressee, context, and behavior. Scientific Reports, 2016, 6, 39419.	3.3	80
58	Habitat use of bats in relation to wind turbines revealed by GPS tracking. Scientific Reports, 2016, 6, 28961.	3.3	84
59	Opportunistic Use of Banana Flower Bracts by <i>Glossophaga soricina</i> . Acta Chiropterologica, 2016, 18, 209-213.	0.6	8
60	Object localization using a biosonar beam: how opening your mouth improves localization. Royal Society Open Science, 2015, 2, 150225.	2.4	14
61	Vocal learning in a social mammal: Demonstrated by isolation and playback experiments in bats. Science Advances, 2015, 1, e1500019.	10.3	87
62	Bats regulate biosonar based on the availability of visual information. Current Biology, 2015, 25, R1124-R1125.	3.9	49
63	Calling louder and longer: how bats use biosonar under severe acoustic interference from other bats. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20152064.	2.6	68
64	Bats Aggregate to Improve Prey Search but Might Be Impaired when Their Density Becomes Too High. Current Biology, 2015, 25, 206-211.	3.9	164
65	Spatial cognition in bats and rats: from sensory acquisition to multiscale maps and navigation. Nature Reviews Neuroscience, 2015, 16, 94-108.	10.2	236
66	A Sensory-Motor Control Model of Animal Flight Explains Why Bats Fly Differently in Light Versus Dark. PLoS Biology, 2015, 13, e1002046.	5.6	18
67	Bats adjust their mouth gape to zoom their biosonar field of view. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 6724-6729.	7.1	48
68	On-board recordings reveal no jamming avoidance in wild bats. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20142274.	2.6	55
69	Detection of plant and greenhouse features using sonar sensors. , 2015, , 299-306.		2
70	Nonecholocating Fruit Bats Produce Biosonar Clicks with Their Wings. Current Biology, 2014, 24, 2962-2967.	3.9	54
71	Noncontact Wideband Sonar for Human Activity Detection and Classification. IEEE Sensors Journal, 2014, 14, 4043-4054.	4.7	19
72	A functional role of the sky's polarization pattern for orientation in the greater mouse-eared bat. Nature Communications, 2014, 5, 4488.	12.8	55

#	Article	IF	CITATIONS
73	THE ROLE OF VOCAL LEARNING IN THE ACOUSTIC COMMUNICATION OF THE EGYPTIAN FRUIT BAT. , 2014, , .		0
74	It's not black or white—on the range of vision and echolocation in echolocating bats. Frontiers in Physiology, 2013, 4, 248.	2.8	80
75	How greater mouse-eared bats deal with ambiguous echoic scenes. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2011, 197, 505-514.	1.6	9
76	Complex echo classification by echo-locating bats: a review. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2011, 197, 475-490.	1.6	36
77	Click-based echolocation in bats: not so primitive after all. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2011, 197, 515-530.	1.6	74
78	Active Control of Acoustic Field-of-View in a Biosonar System. PLoS Biology, 2011, 9, e1001150.	5.6	36
79	How Can Dolphins Recognize Fish According to Their Echoes? A Statistical Analysis of Fish Echoes. PLoS ONE, 2010, 5, e14054.	2.5	13
80	Optimal Localization by Pointing Off Axis. Science, 2010, 327, 701-704.	12.6	120
81	What a Plant Sounds Like: The Statistics of Vegetation Echoes as Received by Echolocating Bats. PLoS Computational Biology, 2009, 5, e1000429.	3.2	43
82	The Voice of Bats: How Greater Mouse-eared Bats Recognize Individuals Based on Their Echolocation Calls. PLoS Computational Biology, 2009, 5, e1000400.	3.2	80
83	Cluster analysis of resting-state fMRI time series. NeuroImage, 2009, 45, 1117-1125.	4.2	106
84	Axcaliber: A method for measuring axon diameter distribution from diffusion MRI. Magnetic Resonance in Medicine, 2008, 59, 1347-1354.	3.0	763
85	A neural model of demyelination of the mouse spinal cord. , 2008, , .		0
86	Plant Classification from Bat-Like Echolocation Signals. PLoS Computational Biology, 2008, 4, e1000032.	3.2	75
87	Virtual definition of neuronal tissue by cluster analysis of multi-parametric imaging (virtual-dot-com) Tj ETQq1 1	0.784314 4.2	rgBT /Overlo
88	Have introduced fish initiated piscivory among the long-fingered bat?. Mammalian Biology, 2006, 71, 139-143.	1.5	24
89	Bats – Using Sound to Reveal Cognition. , 0, , 31-59.		3
90	The Robat—A Robot That Senses the World and Maps It Using Sound, Like a Bat. Frontiers for Young Minds, 0, 8, .	0.8	0

#	Article	IF	CITATIONS
91	Alone, in the dark: The extraordinary neuroethology of the solitary blind mole rat. ELife, 0, 11, .	6.0	4