Christopher J Ridout

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2054015/publications.pdf

Version: 2024-02-01

26 papers 4,070 citations

430874 18 h-index ⁵⁵²⁷⁸¹
26
g-index

27 all docs

27 docs citations

27 times ranked

5522 citing authors

#	Article	IF	CITATIONS
1	Unmasking Mildew Resistance Locus O. Trends in Plant Science, 2021, 26, 1006-1013.	8.8	14
2	The NLR-Annotator Tool Enables Annotation of the Intracellular Immune Receptor Repertoire. Plant Physiology, 2020, 183, 468-482.	4.8	147
3	Mildew Locus O facilitates colonization by arbuscular mycorrhizal fungi in angiosperms. New Phytologist, 2020, 227, 343-351.	7.3	26
4	Mapping of agronomic traits, disease resistance and malting quality in a wide cross of two-row barley cultivars. PLoS ONE, 2019, 14, e0219042.	2.5	8
5	The transcriptional landscape of polyploid wheat. Science, 2018, 361, .	12.6	768
6	Methods to Quantify PAMP-Triggered Oxidative Burst, MAP Kinase Phosphorylation, Gene Expression, and Lignification in Brassicas. Methods in Molecular Biology, 2017, 1578, 325-335.	0.9	8
7	Trade-Offs in Arbuscular Mycorrhizal Symbiosis: Disease Resistance, Growth Responses and Perspectives for Crop Breeding. Agronomy, 2017, 7, 75.	3.0	98
8	Arabidopsis <scp>EF</scp> ‶u receptor enhances bacterial disease resistance in transgenic wheat. New Phytologist, 2015, 206, 606-613.	7.3	150
9	A change in temperature modulates defence to yellow (stripe) rust in wheat line UC1041 independently of resistance gene Yr36. BMC Plant Biology, 2014, 14, 10.	3.6	41
10	Methods to Study PAMP-Triggered Immunity in <i>Brassica</i> Species. Molecular Plant-Microbe Interactions, 2014, 27, 286-295.	2.6	60
11	Plant–pathogen interactions: disease resistance in modern agriculture. Trends in Genetics, 2013, 29, 233-240.	6.7	254
12	Detection of physically interacting proteins with the CC and NB-ARC domains of a putative yellow rust resistance protein, Yr10, in wheat. Journal of Plant Diseases and Protection, 2011, 118, 119-126.	2.9	9
13	Silencing of Aphid Genes by dsRNA Feeding from Plants. PLoS ONE, 2011, 6, e25709.	2.5	363
14	Genome Expansion and Gene Loss in Powdery Mildew Fungi Reveal Tradeoffs in Extreme Parasitism. Science, 2010, 330, 1543-1546.	12.6	725
15	HIGS: Host-Induced Gene Silencing in the Obligate Biotrophic Fungal Pathogen <i>Blumeria graminis</i> Â Â. Plant Cell, 2010, 22, 3130-3141.	6.6	663
16	Coevolution between a Family of Parasite Virulence Effectors and a Class of LINE-1 Retrotransposons. PLoS ONE, 2009, 4, e7463.	2.5	60
17	Genetics of avirulence genes in Blumeria graminis f.sp. hordei and physical mapping of AVRa22 and AVRa12. Fungal Genetics and Biology, 2008, 45, 243-252.	2.1	17
18	Multiple Avirulence Paralogues in Cereal Powdery Mildew Fungi May Contribute to Parasite Fitness and Defeat of Plant Resistance. Plant Cell, 2006, 18, 2402-2414.	6.6	245

#	Article	IF	CITATION
19	Microbial avirulence determinants: guided missiles or antigenic flak?. Molecular Plant Pathology, 2005, 6, 551-559.	4.2	18
20	Isogamous, hermaphroditic inheritance of mitochondrion-encoded resistance to Qo inhibitor fungicides in Blumeria graminis f. sp. tritici. Fungal Genetics and Biology, 2002, 36, 98-106.	2.1	31
21	The recent history of Puccinia striiformis f.sp. tritici in Denmark as revealed by disease incidence and AFLP markers. Plant Pathology, 2002, 51, 13-23.	2.4	103
22	Use of AFLP in cereals research. Trends in Plant Science, 1999, 4, 76-79.	8.8	58
23	Crystal structure of the di-haem cytochrome c peroxidase from Pseudomonas aeruginosa. Structure, 1995, 3, 1225-1233.	3.3	137
24	Nucleotide sequence encoding the di-haem cytochromec551peroxidase fromPseudomonas aeruginosa. FEBS Letters, 1995, 365, 152-154.	2.8	18
25	Polypeptides Associated with Gliotoxin Production in the Biocontrol FungusGliocladium virens. Phytopathology, 1993, 83, 1040.	2.2	4
26	Control of bottom rot disease of lettuce (Rhizoctonia solani) using preparations of Trichoderma viride, T. harzianum or tolclofos-methyl. Plant Pathology, 1991, 40, 359-366.	2.4	23