Donald Darensbourg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2052882/publications.pdf

Version: 2024-02-01

433 papers 23,676 citations

74 h-index

9264

133 g-index

557 all docs

557 docs citations

557 times ranked

10005 citing authors

#	Article	IF	CITATIONS
1	Making Plastics from Carbon Dioxide:  Salen Metal Complexes as Catalysts for the Production of Polycarbonates from Epoxides and CO2. Chemical Reviews, 2007, 107, 2388-2410.	47.7	1,462
2	Cobalt catalysts for the coupling of CO ₂ and epoxides to provide polycarbonates and cyclic carbonates. Chemical Society Reviews, 2012, 41, 1462-1484.	38.1	1,017
3	Construction of Ultrastable Porphyrin Zr Metal–Organic Frameworks through Linker Elimination. Journal of the American Chemical Society, 2013, 135, 17105-17110.	13.7	880
4	Catalysts for the reactions of epoxides and carbon dioxide. Coordination Chemistry Reviews, 1996, 153, 155-174.	18.8	777
5	Copolymerization of CO2 and Epoxides Catalyzed by Metal Salen Complexes. Accounts of Chemical Research, 2004, 37, 836-844.	15.6	450
6	Mechanistic Aspects of the Copolymerization Reaction of Carbon Dioxide and Epoxides, Using a Chiral Salen Chromium Chloride Catalyst. Journal of the American Chemical Society, 2002, 124, 6335-6342.	13.7	362
7	Comparative Kinetic Studies of the Copolymerization of Cyclohexene Oxide and Propylene Oxide with Carbon Dioxide in the Presence of Chromium Salen Derivatives. In Situ FTIR Measurements of Copolymer vs Cyclic Carbonate Production. Journal of the American Chemical Society, 2003, 125, 7586-7591.	13.7	315
8	Catalytic Activity of a Series of Zn(II) Phenoxides for the Copolymerization of Epoxides and Carbon Dioxide. Journal of the American Chemical Society, 1999, 121, 107-116.	13.7	314
9	Chemistry of Carbon Dioxide Relevant to Its Utilization: A Personal Perspective. Inorganic Chemistry, 2010, 49, 10765-10780.	4.0	306
10	What's new with CO2? Recent advances in its copolymerization with oxiranes. Green Chemistry, 2012, 14, 2665.	9.0	299
11	Catalytic Activity of Zinc(II) Phenoxides Which Possess Readily Accessible Coordination Sites. Copolymerization and Terpolymerization of Epoxides and Carbon Dioxide. Macromolecules, 1995, 28, 7577-7579.	4.8	298
12	A convenient synthesis of cis-Mo(CO)4L2 derivatives (L = Group 5a ligand) and a qualitative study of their thermal reactivity toward ligand dissociation. Inorganic Chemistry, 1978 , 17 , 2680 - 2682 .	4.0	261
13	Bis2,6-difluorophenoxide Dimeric Complexes of Zinc and Cadmium and Their Phosphine Adducts:Â Lessons Learned Relative to Carbon Dioxide/Cyclohexene Oxide Alternating Copolymerization Processes Catalyzed by Zinc Phenoxides. Journal of the American Chemical Society, 2000, 122, 12487-12496.	13.7	257
14	Role of the Cocatalyst in the Copolymerization of CO2and Cyclohexene Oxide Utilizing Chromium Salen Complexes. Journal of the American Chemical Society, 2005, 127, 14026-14038.	13.7	254
15	Ring-Opening Polymerization of Cyclic Monomers by Complexes Derived from Biocompatible Metals. Production of Poly(lactide), Poly(trimethylene carbonate), and Their Copolymers. Macromolecules, 2008, 41, 3493-3502.	4.8	233
16	A quest for polycarbonates provided via sustainable epoxide/CO ₂ copolymerization processes. Green Chemistry, 2017, 19, 4990-5011.	9.0	221
17	Kinetic Studies of the Alternating Copolymerization of Cyclic Acid Anhydrides and Epoxides, and the Terpolymerization of Cyclic Acid Anhydrides, Epoxides, and CO ₂ Catalyzed by (salen)Cr ^{III} Cl. Macromolecules, 2012, 45, 2242-2248.	4.8	207
18	Perfectly Alternating Copolymerization of CO ₂ and Epichlorohydrin Using Cobalt(III)-Based Catalyst Systems. Journal of the American Chemical Society, 2011, 133, 15191-15199.	13.7	198

#	Article	IF	CITATIONS
19	Carbon dioxide-based functional polycarbonates: Metal catalyzed copolymerization of CO2 and epoxides. Coordination Chemistry Reviews, 2018, 372, 85-100.	18.8	196
20	Formation of Cyclic Carbonates from Carbon Dioxide and Epoxides Coupling Reactions Efficiently Catalyzed by Robust, Recyclable One-Component Aluminum-Salen Complexes. ACS Catalysis, 2012, 2, 2029-2035.	11.2	185
21	The Activation of Carbon Dioxide by Metai Complexes. Advances in Organometallic Chemistry, 1983, 22, 129-168.	1.0	181
22	Ring-Opening Polymerization of Lactides Catalyzed by Natural Amino-Acid Based Zinc Catalysts. Inorganic Chemistry, 2010, 49, 2360-2371.	4.0	177
23	Cyclohexene Oxide/CO2Copolymerization Catalyzed by Chromium(III) Salen Complexes andN-Methylimidazole:Â Effects of Varying Salen Ligand Substituents and Relative Cocatalyst Loading. Inorganic Chemistry, 2004, 43, 6024-6034.	4.0	170
24	Switchable-Polarity Solvents Prepared with a Single Liquid Component. Journal of Organic Chemistry, 2008, 73, 127-132.	3.2	169
25	Synthesis and physical characterization of poly(cyclohexane carbonate), synthesized from CO2 and cyclohexene oxide. Polymer, 2001, 42, 3995-4004.	3.8	167
26	Perfectly Alternating and Regioselective Copolymerization of Carbonyl Sulfide and Epoxides by Metalâ€Free Lewis Pairs. Angewandte Chemie - International Edition, 2017, 56, 5774-5779.	13.8	162
27	Aluminum Salen Complexes and Tetrabutylammonium Salts:Â A Binary Catalytic System for Production of Polycarbonates from CO2and Cyclohexene Oxide. Inorganic Chemistry, 2005, 44, 1433-1442.	4.0	157
28	Ring-Opening Polymerization of $\scp>\l$ -Lactide and $\hat{l}\mu$ -Caprolactone Utilizing Biocompatible Zinc Catalysts. Random Copolymerization of $\scp>\l$ -Lactide and $\hat{l}\mu$ -Caprolactone. Macromolecules, 2010, 43, 8880-8886.	4.8	157
29	Water-soluble organometallic compounds. 4. Catalytic hydrogenation of aldehydes in an aqueous two-phase solvent system using a $1,3,5$ -triaza- 7 -phosphaadamantane complex of ruthenium. Inorganic Chemistry, 1994, 33, 200-208.	4.0	150
30	1,3,5-Triaz-7-Phosphatricyclo[3.3.1.13,7] Decane and Derivatives. Inorganic Syntheses, 2007, , 40-45.	0.3	150
31	A Oneâ€Pot Synthesis of a Triblock Copolymer from Propylene Oxide/Carbon Dioxide and Lactide: Intermediacy of Polyol Initiators. Angewandte Chemie - International Edition, 2013, 52, 10602-10606.	13.8	150
32	Tandem Metal-Coordination Copolymerization and Organocatalytic Ring-Opening Polymerization via Water To Synthesize Diblock Copolymers of Styrene Oxide/CO ₂ and Lactide. Journal of the American Chemical Society, 2012, 134, 17739-17745.	13.7	149
33	Ring-Opening Polymerization of Cyclic Monomers by Biocompatible Metal Complexes. Production of Poly(lactide), Polycarbonates, and Their Copolymers. Macromolecules, 2007, 40, 3521-3523.	4.8	143
34	Poly(monothiocarbonate)s from the Alternating and Regioselective Copolymerization of Carbonyl Sulfide with Epoxides. Accounts of Chemical Research, 2016, 49, 2209-2219.	15.6	142
35	Highly Selective and Reactive (salan)CrCl Catalyst for the Copolymerization and Block Copolymerization of Epoxides with Carbon Dioxide. Macromolecules, 2009, 42, 6992-6998.	4.8	139
36	Highly Selective Synthesis of CO ₂ Copolymer from Styrene Oxide. Macromolecules, 2010, 43, 9202-9204.	4.8	138

#	Article	IF	CITATIONS
37	Stereoselective Ring-Opening Polymerization of <i>rac</i> -Lactides Catalyzed by Chiral and Achiral Aluminum Half-Salen Complexes. Organometallics, 2010, 29, 5627-5634.	2.3	130
38	Water-soluble organometallic compounds. 2. Catalytic hydrogenation of aldehydes and olefins by new water-soluble 1,3,5-triaza-7-phosphaadamantane complexes of ruthenium and rhodium. Organometallics, 1992, 11, 1990-1993.	2.3	129
39	Pressure Dependence of the Carbon Dioxide/Cyclohexene Oxide Coupling Reaction Catalyzed by Chromium Salen Complexes. Optimization of the Comonomer-Alternating Enchainment Pathway. Organometallics, 2005, 24, 144-148.	2.3	124
40	Mechanistic Studies of the Copolymerization Reaction of Oxetane and Carbon Dioxide to Provide Aliphatic Polycarbonates Catalyzed by (Salen)CrX Complexes. Journal of the American Chemical Society, 2008, 130, 6523-6533.	13.7	124
41	Reactions of transition metal carbonyls with organolithium compounds. II. Prediction of nucleophilic attack at carbon and resultant stereochemistry. Inorganic Chemistry, 1970, 9, 1691-1694.	4.0	121
42	(Salen)CrIIIX Catalysts for the Copolymerization of Carbon Dioxide and Epoxides:Â Role of the Initiator and Cocatalyst. Inorganic Chemistry, 2004, 43, 1831-1833.	4.0	116
43	Intensities of CO stretching modes in the infrared spectra of adsorbed CO and metal carbonyls. Inorganic Chemistry, 1967, 6, 971-977.	4.0	113
44	Carbon Dioxide/Epoxide Coupling Reactions Utilizing Lewis Base Adducts of Zinc Halides as Catalysts. Cyclic Carbonate versus Polycarbonate Production. Inorganic Chemistry, 2003, 42, 581-589.	4.0	112
45	Ring-Opening Polymerization of Trimethylene Carbonate Using Aluminum(III) and Tin(IV) Salen Chloride Catalysts. Macromolecules, 2005, 38, 5406-5410.	4.8	111
46	Ring-Opening Polymerization of Cyclic Esters and Trimethylene Carbonate Catalyzed by Aluminum Half-Salen Complexes. Inorganic Chemistry, 2011, 50, 6775-6787.	4.0	108
47	Mechanistic Insights into Water-Mediated Tandem Catalysis of Metal-Coordination CO ₂ /Epoxide Copolymerization and Organocatalytic Ring-Opening Polymerization: One-Pot, Two Steps, and Three Catalysis Cycles for Triblock Copolymers Synthesis. Macromolecules, 2016, 49, 807-814.	4.8	108
48	A concise review of computational studies of the carbon dioxide–epoxide copolymerization reactions. Polymer Chemistry, 2014, 5, 3949-3962.	3.9	107
49	Bis-Salicylaldiminato Complexes of Zinc. Examination of the Catalyzed Epoxide/CO2Copolymerization. Inorganic Chemistry, 2001, 40, 986-993.	4.0	104
50	Water-soluble organometallic compounds. 5. The regio-selective catalytic hydrogenation of unsaturated aldehydes to saturated aldehydes in an aqueous two-phase solvent system using 1,3,5-triaza-7-phosphaadamantane complexes of rhodium. Journal of Organometallic Chemistry, 1995, 488, 99-108.	1.8	100
51	Supercritical carbon dioxide as solvent for the copolymerization of carbon dioxide and propylene oxide using a heterogeneous zinc carboxylate catalyst. Journal of Molecular Catalysis A, 1995, 104, L1-L4.	4.8	98
52	Depolymerization of Polycarbonates Derived from Carbon Dioxide and Epoxides to Provide Cyclic Carbonates. A Kinetic Study. Macromolecules, 2012, 45, 5916-5922.	4.8	97
53	Directed Self-Assembly of Polystyrene- <i>b</i> -poly(propylene carbonate) on Chemical Patterns via Thermal Annealing for Next Generation Lithography. Nano Letters, 2017, 17, 1233-1239.	9.1	97
54	Solid-State Structures of Zinc(II) Benzoate Complexes. Catalyst Precursors for the Coupling of Carbon Dioxide and Epoxides. Inorganic Chemistry, 2002, 41, 973-980.	4.0	96

#	Article	IF	CITATIONS
55	Alternating copolymerization of CO2 and styrene oxide with Co(iii)-based catalyst systems: differences between styrene oxide and propylene oxide. Energy and Environmental Science, 2011, 4, 5084.	30.8	94
56	Facile reduction of carbon dioxide by anionic Group 6b metal hydrides. Chemistry relevant to catalysis of the water-gas shift reaction. Journal of the American Chemical Society, 1981, 103, 3223-3224.	13.7	93
57	Mechanistic Pathways for Ligand Substitution Processes in Metal Carbonyls. Advances in Organometallic Chemistry, 1982, 21, 113-150.	1.0	91
58	A facile catalytic synthesis of trimethylene carbonate from trimethylene oxide and carbon dioxide. Green Chemistry, 2010, 12, 1376.	9.0	91
59	Water-Soluble Organometallic Compounds. 6.1Synthesis, Spectral Properties, and Crystal Structures of Complexes of 1,3,5-Triaza-7-phosphaadamantane with Group 10 Metals. Inorganic Chemistry, 1997, 36, 4218-4226.	4.0	89
60	Inquiry into the Formation of Cyclic Carbonates during the (Salen)CrX Catalyzed CO ₂ /Cyclohexene Oxide Copolymerization Process in the Presence of Ionic Initiators. Macromolecules, 2007, 40, 7727-7729.	4.8	88
61	Chain transfer agents utilized in epoxide and CO ₂ copolymerization processes. Green Chemistry, 2019, 21, 2214-2223.	9.0	88
62	Synthesis of Poly(indene carbonate) from Indene Oxide and Carbon Dioxideâ€"A Polycarbonate with a Rigid Backbone. Journal of the American Chemical Society, 2011, 133, 18610-18613.	13.7	86
63	Anionic Group 6B metal carbonyl hydrides and formates. Chemistry relevant to catalysis of the water-gas shift reaction by Group 6B metal hexacarbonyls. Organometallics, 1982, 1, 1685-1693.	2.3	85
64	Mechanistic Aspects of the Copolymerization of CO2and Epoxides by Soluble Zinc Bis(phenoxide) Catalysts as Revealed by Their Cadmium Analogues. Journal of the American Chemical Society, 1998, 120, 4690-4698.	13.7	84
65	Construction of Versatile and Functional Nanostructures Derived from CO ₂ â€based Polycarbonates. Angewandte Chemie - International Edition, 2015, 54, 10206-10210.	13.8	84
66	Biometal Derivatives as Catalysts for the Ring-Opening Polymerization of Trimethylene Carbonate. Optimization of the Ca(II) Salen Catalyst System. Macromolecules, 2006, 39, 4374-4379.	4.8	83
67	Mechanistic Insight into the Initiation Step of the Coupling Reaction of Oxetane or Epoxides and CO ₂ Catalyzed by (salen)CrX Complexes. Inorganic Chemistry, 2008, 47, 10000-10008.	4.0	82
68	An Efficient Method of Depolymerization of Poly(cyclopentene carbonate) to Its Comonomers: Cyclopentene Oxide and Carbon Dioxide. Macromolecules, 2013, 46, 5850-5855.	4.8	82
69	Crystalline CO2 Copolymer from Epichlorohydrin via Co(III)-Complex-Mediated Stereospecific Polymerization. Macromolecules, 2013, 46, 2128-2133.	4.8	82
70	Responses of the Fe(CN)2(CO) Unit to Electronic Changes as Related to Its Role in [NiFe]Hydrogenase. Journal of the American Chemical Society, 1998, 120, 10103-10114.	13.7	81
71	Water-Soluble Organometallic Compounds. 7.1Further Studies of 1,3,5-Triaza-7-Phosphaadamantane Derivatives of Group 10 Metals, Including Metal Carbonyls and Hydrides. Inorganic Chemistry, 1999, 38, 2473-2481.	4.0	81
72	Tuning the Selectivity of the Oxetane and CO ₂ Coupling Process Catalyzed by (Salen)CrCl/ <i>n</i> -Bu ₄ NX: Cyclic Carbonate Formation vs Aliphatic Polycarbonate Production. Macromolecules, 2010, 43, 5996-6003.	4.8	80

#	Article	IF	Citations
73	CO2-Based Block Copolymers: Present and Future Designs. Trends in Chemistry, 2020, 2, 750-763.	8.5	78
74	.pi. Acidity of tris(2-cyanoethyl)phosphine. X-ray structural studies of M(CO)5P(CH2CH2CN)3 (M =) Tj ETQq0 0	0 rgBT /Ov	verlock 10 Tf
75	Synthesis, structure, and reactivity of zerovalent group 6 metal pentacarbonyl aryl oxide complexes. Reactions with carbon dioxide. Journal of the American Chemical Society, 1989, 111, 7094-7103.	13.7	77
76	Toward the Design of Double Metal Cyanides for the Copolymerization of CO2and Epoxides. Inorganic Chemistry, 2001, 40, 6543-6544.	4.0	77
77	Catalytic Coupling of Cyclopentene Oxide and CO ₂ Utilizing Bifunctional (salen)Co(III) and (salen)Cr(III) Catalysts: Comparative Processes Involving Binary (salen)Cr(III) Analogs. ACS Catalysis, 2013, 3, 3050-3057.	11.2	77
78	Infrared and kinetic studies of Group VI metal pentacarbonyl amine compounds. Inorganic Chemistry, 1972, 11, 72-77.	4.0	76
79	Anionic Group 6B metal carbonyls as homogeneous catalysts for carbon dioxide/hydrogen activation. The production of alkyl formates. Journal of the American Chemical Society, 1984, 106, 3750-3754.	13.7	76
80	Thermodynamics of the Carbon Dioxide–Epoxide Copolymerization and Kinetics of the Metal-Free Degradation: A Computational Study. Macromolecules, 2013, 46, 83-95.	4.8	73
81	A New Water-Soluble Phosphine Derived from 1,3,5-Triaza-7-phosphaadamantane (PTA),â€3,7-Diacetyl-1,3,7-triaza-5-phosphabicyclo[3.3.1]nonane. Structural, Bonding, and Solubility Properties. Organometallics, 2004, 23, 1747-1754.	2.3	72
82	Effective, Selective Coupling of Propylene Oxide and Carbon Dioxide to Poly(Propylene Carbonate) Using (Salen)CrN3Catalysts. Inorganic Chemistry, 2005, 44, 4622-4629.	4.0	71
83	Synthesis, spectral properties, and reactions of manganese and rhenium pentacarbonyl phosphine and phosphite cation derivatives and related complexes. Inorganic Chemistry, 1975, 14, 1579-1584.	4.0	70
84	Homogeneous catalysts for carbon dioxide/hydrogen activation. Alkyl formate production using anionic ruthenium carbonyl clusters as catalysts. Journal of the American Chemical Society, 1983, 105, 5937-5939.	13.7	68
85	Insertion reactions of carbon dioxide with square-planar rhodium alkyl and aryl complexes. Inorganic Chemistry, 1987, 26, 3827-3830.	4.0	68
86	Analysis of an Organometallic Iron Site Model for the Heterodimetallic Unit of [NiFe]Hydrogenase. Journal of the American Chemical Society, 1997, 119, 7903-7904.	13.7	68
87	(Salen)Co(II)/ <i>n</i> -Bu ₄ NX Catalysts for the Coupling of CO ₂ and Oxetane: Selectivity for Cyclic Carbonate Formation in the Production of Poly-(trimethylene carbonate). Macromolecules, 2009, 42, 4063-4070.	4.8	68
88	Spectroscopic studies of some carbene pentacarbonyl complexes of chromium(0) and tungsten(0). Inorganic Chemistry, 1970, 9, 32-39.	4.0	67
89	Manganese(III) Schiff Base Complexes:Â Chemistry Relevant to the Copolymerization of Epoxides and Carbon Dioxide. Inorganic Chemistry, 2007, 46, 5967-5978.	4.0	67
90	Electronic and steric control of reactions of benzylmagnesium chloride with substituted metal carbonyls. Journal of the American Chemical Society, 1973, 95, 5919-5924.	13.7	66

#	Article	IF	Citations
91	Infrared, conductance, and kinetic evidence for alkali metal ion interactions with derivatives of manganese carbonylates. Journal of the American Chemical Society, 1976, 98, 3127-3136.	13.7	66
92	Investigations into the coupling of cyclohexene oxide and carbon disulfide catalyzed by (salen)CrCl. Selectivity for the production of copolymers vs. cyclic thiocarbonates. Dalton Transactions, 2009, , 8891.	3.3	66
93	Postpolymerization Functionalization of Copolymers Produced from Carbon Dioxide and 2-Vinyloxirane: Amphiphilic/Water-Soluble CO ₂ -Based Polycarbonates. Macromolecules, 2014, 47, 3806-3813.	4.8	64
94	Solution and Solid-State Structures of Phosphine Adducts of Monomeric Zinc Bisphenoxide Complexes. Importance of These Derivatives in CO2/Epoxide Copolymerization Processesâ€. Inorganic Chemistry, 2000, 39, 1578-1585.	4.0	63
95	Copolymerization and Cycloaddition Products Derived from Coupling Reactions of 1,2-Epoxy-4-cyclohexene and Carbon Dioxide. Postpolymerization Functionalization via Thiol–Ene Click Reactions. Macromolecules, 2014, 47, 7347-7353.	4.8	63
96	Infrared intensities of the carbonyl stretching modes and electronic spectra of substituted molybdenum carbonyls. Inorganic Chemistry, 1968, 7, 959-966.	4.0	62
97	Synthesis and Structural Characterization of Double Metal Cyanides of Iron and Zinc:Â Catalyst Precursors for the Copolymerization of Carbon Dioxide and Epoxides. Inorganic Chemistry, 2003, 42, 7809-7818.	4.0	62
98	(Meta - Sulfonatophenyl) Diphenylphosphine, Sodium Salt and its Complexes with Rhodium(I), Ruthenium(II), Iridium(I). Inorganic Syntheses, 2007, , $1-8$.	0.3	62
99	Aliphatic Polycarbonates Produced from the Coupling of Carbon Dioxide and Oxetanes and Their Depolymerization via Cyclic Carbonate Formation. Macromolecules, 2011, 44, 2568-2576.	4.8	62
100	Water-Soluble Organometallic Compounds. 9.1 Catalytic Hydrogenation and Selective Isomerization of Olefins by Water-Soluble Analogues of Vaska's Complex. Organometallics, 2000, 19, 3963-3969.	2.3	61
101	(Tetramethyltetraazaannulene)chromium Chloride:Â A Highly Active Catalyst for the Alternating Copolymerization of Epoxides and Carbon Dioxide. Inorganic Chemistry, 2007, 46, 5474-5476.	4.0	61
102	Detailed analysis of the carbonyl stretching vibrations in axial and equatorial substituted iron carbonyl compounds. Absolute infrared intensities and force constants of the carbonyl ligands. Inorganic Chemistry, 1974, 13, 2135-2145.	4.0	59
103	Aqueous organometallic chemistry: the mechanism of catalytic hydrogenations with chlorotris(1,3,5-triaza-7-phosphaadamantane) rhodium(l). Journal of Organometallic Chemistry, 1996, 512, 45-50.	1.8	59
104	Progress in the catalytic reactions of CO ₂ and epoxides to selectively provide cyclic or polymeric carbonates. Green Chemistry, 2022, 24, 5007-5034.	9.0	59
105	(Salan)CrCl, an effective catalyst for the copolymerization and terpolymerization of epoxides and carbon dioxide. Journal of Polymer Science Part A, 2012, 50, 127-133.	2.3	58
106	Solution structure and reactivity of hydridoiron tetracarbonyl anion, [HFe(CO)4] Inorganic Chemistry, 1978, 17, 297-301.	4.0	57
107	A kinetic investigation of carbon dioxide insertion processes involving anionic tungsten-alkyl and -aryl derivatives: effects of carbon dioxide pressure, counterions, and ancillary ligands. Comparisons with migratory carbon monoxide insertion processes. Journal of the American Chemical Society, 1985, 107, 7463-7473.	13.7	57
108	Catalytic Coupling of Carbon Dioxide and 2,3-Epoxy-1,2,3,4-tetrahydronaphthalene in the Presence of a (Salen)CrllICl Derivative. Organometallics, 2004, 23, 924-927.	2.3	56

#	Article	IF	CITATIONS
109	Mechanistic Studies of the Copolymerization Reaction of Aziridines and Carbon Monoxide to Produce Poly-Î ² -peptoids. Journal of the American Chemical Society, 2004, 126, 13808-13815.	13.7	55
110	Oxygen/Sulfur Scrambling During the Copolymerization of Cyclopentene Oxide and Carbon Disulfide: Selectivity for Copolymer vs Cyclic [Thio]carbonates. Macromolecules, 2013, 46, 8102-8110.	4.8	55
111	Characterization of Steric and Electronic Properties of NiN2S2Complexes as S-Donor Metallodithiolate Ligands. Journal of the American Chemical Society, 2005, 127, 17323-17334.	13.7	54
112	Water-soluble organometallic compounds. 3. Kinetic investigations of dissociative phosphine substitution processes involving water-soluble Group 6 metal derivatives in miscible aqueous/organic media. Inorganic Chemistry, 1993, 32, 47-53.	4.0	53
113	Base initiated depolymerization of polycarbonates to epoxide and carbon dioxide co-monomers: a computational study. Green Chemistry, 2013, 15, 1578.	9.0	53
114	Length of a tungsten-phosphine bond free of excessive steric interactions: crystal structure of pentacarbonyl(trimethylphosphine)tungsten. Inorganic Chemistry, 1981, 20, 4440-4442.	4.0	52
115	Poly(trimethylene monothiocarbonate) from the Alternating Copolymerization of COS and Oxetane: A Semicrystalline Copolymer. Macromolecules, 2016, 49, 8863-8868.	4.8	52
116	Syntheses and Structures of Epoxide Adducts of Soluble Cadmium(II) Carboxylates. Models for the Initiation Process in Epoxide/CO2 Coupling Reactions. Journal of the American Chemical Society, 1995, 117, 538-539.	13.7	51
117	Probing the mechanistic aspects of the chromium salen catalyzed carbon dioxide/epoxide copolymerization process using in situ ATR/FTIR. Catalysis Today, 2004, 98, 485-492.	4.4	51
118	Anionic group 6 hydrides and carboxylates as homogeneous catalysts for reduction of aldehydes and ketones. Journal of the American Chemical Society, 1986, 108, 5465-5470.	13.7	50
119	Investigations into the steric influences on the reaction mechanism of carbon dioxide insertion into metal-oxygen bonds. Carbonyl sulfide activation as a model for CO2. Inorganic Chemistry, 1991, 30, 2418-2424.	4.0	50
120	Solution and Solid-State Structural Studies of Epoxide Adducts of Cadmium Phenoxides. Chemistry Relevant to Epoxide Activation for Ring-Opening Reactions. Journal of the American Chemical Society, 2002, 124, 7075-7083.	13.7	50
121	Metal Salen Derivatives as Catalysts for the Alternating Copolymerization of Oxetanes and Carbon Dioxide To Afford Polycarbonates. Inorganic Chemistry, 2006, 45, 3831-3833.	4.0	50
122	Thermal and Photochemical Reactivity of Manganese Tricarbonyl and Tetracarbonyl Complexes with a Bulky Diazabutadiene Ligand. Inorganic Chemistry, 2014, 53, 4081-4088.	4.0	50
123	Terpolymerization of propylene oxide and vinyl oxides with CO ₂ : copolymer cross-linking and surface modification via thiol–ene click chemistry. Polymer Chemistry, 2015, 6, 1768-1776.	3.9	50
124	Intramolecular isomerization of an octahedral complex: bis(tri-n-butylphosphine)molybdenum tetracarbonyl. Inorganic Chemistry, 1979, 18, 14-17.	4.0	49
125	Reduction of carbon dioxide and carbonyl sulfide by anionic Group VIB metal hydrides and alkyls. Carbon-hydrogen and carbon-carbon bond formation processes and the structure of [PNP][Cr(CO)5SC(O)H]. Journal of the American Chemical Society, 1982, 104, 349-350.	13.7	49
126	Mechanistic studies of carbon dioxide insertion into metal hydrides and extrusion from the corresponding metal formates utilizing Group 6 metal carbonyl derivatives as reaction probes. Journal of the American Chemical Society, 1990, 112, 9252-9257.	13.7	49

#	Article	IF	CITATIONS
127	Copolymerization and Terpolymerization of CO2and Epoxides Using a Soluble Zinc Crotonate Catalyst Precursor. Macromolecules, 1999, 32, 2137-2140.	4.8	49
128	An Investigation of the Pathways for Oxygen/Sulfur Scramblings during the Copolymerization of Carbon Disulfide and Oxetane. Macromolecules, 2015, 48, 5526-5532.	4.8	49
129	Environmentally Benign CO ₂ -Based Copolymers: Degradable Polycarbonates Derived from Dihydroxybutyric Acid and Their Platinum–Polymer Conjugates. Journal of the American Chemical Society, 2016, 138, 4626-4633.	13.7	49
130	Steric contributions to the solid-state structures of bis(phosphine) derivatives of molybdenum carbonyl. X-ray structural studies of cis-Mo(CO)4[PPh3-nMen]2 (n = 0, 1, 2). Inorganic Chemistry, 1982, 21, 294-299.	4.0	48
131	Reaction of (Cy3P)2Ni(H)(CH3) with carbon dioxide. Formation of an hydridonickel formate complex, HNi(O2CH)(Cy3P)2. Journal of the American Chemical Society, 1987, 109, 7539-7540.	13.7	48
132	Copolymerization of Epoxides and Carbon Dioxide. Evidence Supporting the Lack of Dual Catalysis at a Single Metal Site. Inorganic Chemistry, 2009, 48, 8668-8677.	4.0	47
133	Synthesis of CO ₂ -Derived Poly(indene carbonate) from Indene Oxide Utilizing Bifunctional Cobalt(III) Catalysts. Macromolecules, 2013, 46, 5929-5934.	4.8	47
134	Sequestering CO2 for Short-Term Storage in MOFs: Copolymer Synthesis with Oxiranes. ACS Catalysis, 2014, 4, 1511-1515.	11.2	47
135	Steric contributions to the solution dynamics involving phosphorus ligand dissociation in substituted derivatives of molybdenum hexacarbonyl. Inorganic Chemistry, 1979, 18, 1257-1261.	4.0	46
136	Water-soluble organometallic compounds. 1. The synthesis, characterization, and x-ray structure of (kryptofix-221)sodium pentacarbonyl[tris(m-sulfonatophenyl)phosphine]tungstate(3-). Inorganic Chemistry, 1991, 30, 1144-1147.	4.0	46
137	An Examination of the Steric and Electronic Effects in the Copolymerization of Carbonyl Sulfide and Styrene Oxide. Macromolecules, 2015, 48, 6057-6062.	4.8	46
138	Photochemical substitution reactions of Group 6B metal tetracarbonyl norbornadiene complexes with carbon-13 monoxide, kinetics of subsequent thermal rearrangements in the stereospecifically labeled species, and relation of these results to the photoinduced hydrogenation process. Journal of the American Chemical Society, 1977, 99, 896-903.	13.7	45
139	The solution photosubstitution chemistry of triphenylphosphine derivatives of molybdenum hexacarbonyl. Journal of the American Chemical Society, 1978, 100, 463-468.	13.7	45
140	Formate ion as a monodentate ligand. Synthesis, structure, and decarboxylation of (.eta.5-cyclopentadienyl)dicarbonyl(formato)iron. Journal of the American Chemical Society, 1981, 103, 1297-1298.	13.7	45
141	Phase-transfer-catalyzed nucleophilic reactions of hydroxide ions at metal-bound carbon monoxide centers. Journal of the American Chemical Society, 1980, 102, 4688-4694.	13.7	44
142	Role of the Metal Center in the Homogeneous Catalytic Decarboxylation of Select Carboxylic Acids. Copper(I) and Zinc(II) Derivatives of Cyanoacetate. Journal of the American Chemical Society, 1995, 117, 318-328.	13.7	44
143	Synthesis and X-ray Structure of the Novel Aluminum Complex [{î·3-HB(3-Phpz)2(5-Phpz)}2Al][AlCl4]. Catalysis of CO2/Propylene Oxide to Propylene Carbonate by the AlCl4-Anion. Inorganic Chemistry, 1996, 35, 2682-2684.	4.0	44
144	Syntheses, Structures, and Binding Constants of Cyclic Ether and Thioether Adducts of Soluble Cadmium(II) Carboxylates. Intermediates in the Homopolymerization of Oxiranes and Thiiranes and in Carbon Dioxide Coupling Processes. Inorganic Chemistry, 1997, 36, 2426-2432.	4.0	44

#	Article	IF	CITATIONS
145	The Copolymerization of Carbon Dioxide and [2-(3,4-Epoxycyclohexyl)ethyl]trimethoxysilane Catalyzed by (Salen)CrCl. Formation of a CO2 Soluble Polycarbonate. Inorganic Chemistry, 2003, 42, 4498-4500.	4.0	44
146	Synthesis and structural characterization of iron(III) salen complexes possessing appended anionic oxygen donor ligands. Inorganica Chimica Acta, 2004, 357, 2143-2149.	2.4	44
147	N2S2Ni Metallothiolates as a Class of Ligands that Support Organometallic and Bioorganometallic Reactivity. Angewandte Chemie - International Edition, 2005, 44, 1217-1220.	13.8	43
148	An Exploration of the Coupling Reactions of Epoxides and Carbon Dioxide Catalyzed by Tetramethyltetraazaannulene Chromium(III) Derivatives: Formation of Copolymers versus Cyclic Carbonates. Inorganic Chemistry, 2008, 47, 11868-11878.	4.0	43
149	Homogeneous catalytic synthesis of alkyl formates from the reaction of alkyl halides, carbon dioxide, and hydrogen in the presence of anionic Group 6 carbonyl catalysts and sodium salts. Journal of the American Chemical Society, 1987, 109, 3330-3336.	13.7	41
150	Kinetic Study of the Insertion and Deinsertion of Carbon Dioxide intofac-(CO)3(dppe)MnOR Derivatives. Organometallics, 2003, 22, 5585-5588.	2.3	41
151	A phase separable polycarbonate polymerization catalyst. Chemical Communications, 2008, , 975-977.	4.1	41
152	Comments on the depolymerization of polycarbonates derived from epoxides and carbon dioxide: A mini review. Polymer Degradation and Stability, 2018, 149, 45-51.	5.8	41
153	Kinetic studies of thermal decomposition and substitution reactions of cis-Mo(CO)4[P(C6H5)3](amine) compounds. Competitive study of Lewis bases for the intermediate [Mo(CO)4P(C6H5)3]. Inorganic Chemistry, 1973, 12, 1286-1291.	4.0	40
154	Insertion of carbon dioxide into metal alkoxide bonds. Synthesis and structure of tungsten tetracarbonyl carbonate. Journal of the American Chemical Society, 1987, 109, 290-292.	13.7	40
155	Intramolecular and intermolecular hydrogen bonding in triphenylphosphine derivatives of copper(I) carboxylates, (Ph3P)2CuO2C(CH2)nCOOH. Role of copper(I) in the decarboxylation of malonic acid and its derivatives. Inorganic Chemistry, 1994, 33, 531-537.	4.0	40
156	Dramatic Behavioral Differences of the Copolymerization Reactions of 1,4-Cyclohexadiene and 1,3-Cyclohexadiene Oxides with Carbon Dioxide. Macromolecules, 2015, 48, 1679-1687.	4.8	40
157	Construction of Autonomic Self-Healing CO ₂ -Based Polycarbonates via One-Pot Tandem Synthetic Strategy. Macromolecules, 2018, 51, 1308-1313.	4.8	40
158	The stereochemical course of reactions leading to formation of mono-ligated (phenylacetyl)manganese tetracarbonyl compounds. Journal of Organometallic Chemistry, 1975, 85, 73-84.	1.8	39
159	Coordinatively Unsaturated Derivatives of Group 6 Metal Carbonyls Containing the π-Donating Ligand 3,5-Di-tert-butylcatecholate. Inorganic Chemistry, 1996, 35, 1529-1534.	4.0	39
160	X-ray structural studies of cis-Mo(CO)4(PR3)2 (R = Me, Et, n-Bu) derivatives and their relationship to solution isomerization processes in these octahedral species. Inorganic Chemistry, 1982 , 21 , 2661 - 2666 .	4.0	38
161	Ligand substitution processes in tetranuclear carbonyl clusters. 6. Steric contribution to ligand dissociation in multisubstituted tetrairidium dodecacarbonyl derivatives. Journal of the American Chemical Society, 1982, 104, 3906-3910.	13.7	38
162	A More Intimate Examination of the Role of Copper(I) in the Decarboxylation of Derivatives of Malonic Acid. Comparisons with Zinc(II) Analogs. Inorganic Chemistry, 1995, 34, 2389-2398.	4.0	38

#	Article	IF	CITATIONS
163	Coordinatively and Electronically Unsaturated Tungsten(0) Carbonyl Complexes Stabilized by π-Donating Amido Ligands. Inorganic Chemistry, 1996, 35, 1535-1539.	4.0	38
164	Bis(triphenylphosphine)copper(I) Complexes of Orotate and I-Dihydroorotate. Inorganic Chemistry, 1998, 37, 6125-6128.	4.0	38
165	Highly regioselective and alternating copolymerization of carbonyl sulfide with phenyl glycidyl ether. Polymer Chemistry, 2015, 6, 6955-6958.	3.9	38
166	Depolymerization of Poly(indene carbonate). A Unique Degradation Pathway. Macromolecules, 2013, 46, 3228-3233.	4.8	37
167	Kinetics of the (salen)Cr(<scp>iii</scp>)- and (salen)Co(<scp>iii</scp>)-catalyzed copolymerization of epoxides with CO ₂ , and of the accompanying degradation reactions. Polymer Chemistry, 2015, 6, 1103-1117.	3.9	37
168	MECHANISTIC ASPECTS OF CATALYTIC CARBON DIOXIDE METHANATION. Reviews in Inorganic Chemistry, 1985, 7, 315-340.	4.1	36
169	Mechanistic aspects of decarboxylation reactions of Group 10 metal formato hydrido tricyclohexylphosphine [(PCy3)2M(H)O2CH] derivatives. Journal of the American Chemical Society, 1990, 112, 5759-5762.	13.7	35
170	Organometallic Derivatives of Orotic Acid. COâ^'Labilizing Ability of the Amido Group in Chromium and Tungsten Carbonyl Complexes. Inorganic Chemistry, 1998, 37, 2538-2546.	4.0	35
171	Availability of Other Aliphatic Polycarbonates Derived from Geometric Isomers of Butene Oxide and Carbon Dioxide Coupling Reactions. Macromolecules, 2014, 47, 4943-4948.	4.8	35
172	Synthesis of CO ₂ -Based Block Copolymers via Chain Transfer Polymerization Using Macroinitiators: Activity, Blocking Efficiency, and Nanostructure. Macromolecules, 2018, 51, 791-800.	4.8	35
173	Photochemical substitution reactions of substituted Group VI metal carbonyls. Inorganic Chemistry, 1972, 11, 1967-1970.	4.0	34
174	Oxygen exchange reactions of water (oxygen-18) with hexacarbonyl cations of manganese and rhenium. Journal of the American Chemical Society, 1977, 99, 4726-4729.	13.7	34
175	Ligand substitution processes in tetranuclear metal carbonyl clusters. 2. Tris(.mucarbonyl)-nonacarbonyltetracobalt derivatives. Inorganic Chemistry, 1980, 19, 2585-2590.	4.0	34
176	Ligand substitution processes in tetranuclear carbonyl clusters. 4. Molecular structure and reactivity of octacarbonyltetrakis(trimethylphosphine)tetrairidium. Inorganic Chemistry, 1981, 20, 3846-3850.	4.0	34
177	Ligand substitution processes in tetranuclear carbonyl clusters. 7. Molecular structure and carbon monoxide exchange processes of $Co4(CO)9(tripod)$, $tripod = 1,1,1$ -tris(diphenylphosphino)methane or $HC(PPh2)3$. Organometallics, 1984, 3, 1210-1217.	2.3	34
178	113Cd Shielding Tensors of Monomeric Cadmium Compounds Containing Nitrogen Donor Atoms. 3. Syntheses, Crystal Structure, and 113Cd NMR Spectroscopy of the Six-Coordinate Complexes [HB(pz)3]2Cd, [HB(3-Phpz)3]2Cd, and [B(pz)4]Cd[HB(3-Phpz)3] (pz = pyrazolyl). Journal of the American Chemical Society, 1995, 117, 10998-11005.	13.7	34
179	Catalytic carbon dioxide methanation by alumina-supported mono- and polynuclear ruthenium carbonyls. Inorganic Chemistry, 1986, 25, 1603-1609.	4.0	33
180	Synthesis and characterization of carbonyl thiolato [Et4N][M(CO)5SR] and [Et4N]2[M2(CO)8(SR)2] complexes (M = chromium, molybdenum, tungsten). Ligand substitution reactions and x-ray crystal structure of [Et4N]2[W2(CO)8(SPh)2]. Inorganic Chemistry, 1988, 27, 3636-3643.	4.0	33

#	Article	IF	CITATIONS
181	Coordination Chemistry, Structure, and Reactivity of Thiouracil Derivatives of Tungsten(0) Hexacarbonyl:Â A Theoretical and Experimental Investigation into the Chelation/Dechelation of Thiouracil via CO Loss and Addition. Inorganic Chemistry, 1999, 38, 4715-4723.	4.0	33
182	Intramolecular rearrangement of carbonyl ligands in the octahedral complex pentacarbonyl(trimethyl phosphite) tungsten by a nondissociative process: an example of the utility of the oxygen-18 isotope shift on the carbon-13 NMR of the carbonyl ligand. Journal of the American Chemical Society, 1979, 101, 6447-6449.	13.7	32
183	Molecular and electronic structures of three pyridine- and piperidine-substituted chromium carbonyl compounds: $Cr(CO)5(C5H5N)$, $Cr(CO)5(C5H10NH)$ and $Cis-Cr(CO)4(C5H10NH)$ [P(OMe)3]. Inorganic Chemistry, 1981, 20, 4090-4096.	4.0	32
184	Cation-anion interaction in the [Na-kryptofix-221][W(CO)5O2CH] derivative and its relevance in carbon dioxide reduction processes. Journal of the American Chemical Society, 1985, 107, 5687-5693.	13.7	32
185	Synthesis, reactivity, and x-ray structure of fac-(acetonitrile)tricarbonyl[bis(diphenylphosphino)methane]tungsten. Stereoselective preparation of fac-W(CO)3(13CO)(dppm) and subsequent intramolecular rearrangement processes. Inorganic Chemistry. 1987. 26. 3727-3732.	4.0	32
186	Catalysis of carbon dioxide and oxetanes to produce aliphatic polycarbonates. Green Chemistry, 2020, 22, 7707-7724.	9.0	32
187	Perfectly Alternating and Regioselective Copolymerization of Carbonyl Sulfide and Epoxides by Metalâ€Free Lewis Pairs. Angewandte Chemie, 2017, 129, 5868-5873.	2.0	31
188	Catalyst-Free Construction of Versatile and Functional CS ₂ -Based Polythioureas: Characteristics from Self-Healing to Heavy Metal Absorption. Macromolecules, 2019, 52, 8596-8603.	4.8	31
189	Randomly Distributed Sulfur Atoms in the Main Chains of CO ₂ â€Based Polycarbonates: Enhanced Optical Properties. Angewandte Chemie - International Edition, 2021, 60, 4315-4321.	13.8	31
190	Electrochemical investigations of compounds having isomeric forms with similar standard redox potentials: oxidation of bis(tri-n-butylphosphine)molybdenum tetracarbonyl and related complexes. Journal of the American Chemical Society, 1981, 103, 6827-6832.	13.7	30
191	Chemical and x-ray structural studies on the (acetato)- and (trifluoroacetato)pentacarbonylmetalates of chromium and molybdenum. Journal of the American Chemical Society, 1981, 103, 398-405.	13.7	30
192	Synthesis and Structures of (Dialkylamino)ethylcyclopentadienyl Derivatives of Zinc. Organometallics, 2001, 20, 4413-4417.	2.3	30
193	Mixed metal cyanide complexes derived from the CpCo(CN)3â° anion. Inorganica Chimica Acta, 2004, 357, 1603-1607.	2.4	30
194	Labile Copper (I) Chloride Complexes: Preparation and Handling. Inorganic Syntheses, 2007, , 222-228.	0.3	30
195	Switchable catalytic processes involving the copolymerization of epoxides and carbon dioxide for the preparation of block polymers. Inorganic Chemistry Frontiers, 2017, 4, 412-419.	6.0	30
196	Ligand additivity in the valence photoelectron spectroscopy of phosphine-substituted molybdenum carbonyls. Inorganic Chemistry, 1984, 23, 4361-4365.	4.0	29
197	Cluster synthesis via aggregation: synthesis and solution and solid-state characterization of sulfur-capped group 6 metal carbonyl clusters. Inorganic Chemistry, 1988, 27, 821-829.	4.0	29
198	Synthesis and reactivity of tungsten pentacarbonyl hydroxo and bicarbonato complexes. Molecular structure of [PPN][W(CO)5HCO3], an organometallic analog for carbonic anhydrase. Inorganic Chemistry, 1993, 32, 4675-4676.	4.0	29

#	Article	IF	CITATIONS
199	The Reversible Insertion Reaction of Carbon Dioxide with the W(CO)5OH-Anion. Isolation and Characterization of the Resulting Bicarbonate Complex [PPN][W(CO)5O2COH]. Inorganic Chemistry, 1996, 35, 4406-4413.	4.0	29
200	Amino Acid Complexes of Metal Carbonyls: Mechanistic Aspects of the CO-Labilizing Ability of Glycinate Ligands in Zero-Valent Chromium and Tungsten Derivativesâ€. Inorganic Chemistry, 1997, 36, 3648-3656.	4.0	29
201	Phosphine Adducts of Monomeric Zinc(bis-phenoxides):Â Solution and Solid-State Structures of (2,6-Di-tert-butylphenoxide)ZnL Complexes (L = PMePh2and PCy3). Inorganic Chemistry, 1998, 37, 2852-2853.	4.0	29
202	The separation of pure lateral and diagonal isomers of cyclopentadienyldibromodicarbonylrhenium. Journal of Organometallic Chemistry, 1975, 93, C23-C25.	1.8	28
203	Studies using tributylphosphine oxide as a carbon monoxide labilizing ligand in the synthesis of metal carbonyl complexes highly enriched in carbon-13 monoxide. Inorganic Chemistry, 1981, 20, 1918-1921.	4.0	28
204	Cateholates as $ f $ and the $ f $ and $ f $ are the $ f $ and $ f $ are the $ f $ and $ f $ are the $ f $ and $ f $ are the $ f $ and $ f $ are the $ f $ and $ f $ are the $ f $ and $ f $ are the $ f $ and $ f $ are the $ f $ and $ f $ are the $ f $ and $ f $ are the $ f $ and $ f $ are the $ f $ and $ f $ are the $ f $ and $ f $ are the $ f $	4.4	28
205	Nucleophilic addition of a water-soluble phosphine to aldehydes. Isolation of (1-hydroxyalkyl)phosphonium salts and the crystal structure of the (1-methoxy-1-benzyl)(m-sulfonatophenyl)diphenylphosphonium salt. Inorganic Chemistry, 1994, 33, 175-177.	4.0	28
206	Title is missing!. Journal of Cluster Science, 2000, 11, 95-107.	3.3	28
207	Solution photosubstitution chemistry of amine pentacarbonyl derivatives of the Group 6B metals in the presence of carbon-13 monoxide. An example of stereospecific incorporation of carbon-13 monoxide. Inorganic Chemistry, 1978, 17, 884-888.	4.0	27
208	Ligand substitution processes in tetranuclear carbonyl clusters. 3. Molecular structures of Co4(CO)8(.muCO)3[P(C6H5)3] and Co4(CO)7(.muCO)3[P(OCH3)3]2. Inorganic Chemistry, 1981, 20, 1911-1918.	4.0	27
209	Ligand-substitution processes in tetranuclear carbonyl clusters. 5. A kinetic and infrared investigation of carbon-13 monoxide incorporation into trimucarbonyl-nonacarbonyltetracobalt and its monosubstituted derivatives. Organometallics, 1982, 1, 306-311.	2.3	27
210	Stereochemical nonrigidity in six-coordinate Group VIB metal carbonyl derivatives via a nondissociative pathway. Inorganic Chemistry, 1984, 23, 2993-2996.	4.0	27
211	Crystal structure and reactivity of bis[bis(1,2-dimethylphosphino)ethane]copper(2+) bis(tetracarbonylcobalt)curprate(2-): staggered and eclipsed conformations of [(CO)4CoCuCo(CO)4]-anions. Inorganic Chemistry, 1990, 29, 2153-2157.	4.0	27
212	Cyanide-Bridged Heterobimetallic Complexes of the Group 6 Metal Carbonyls and Copper(I). X-ray Structures of (CO)5MCNCu(PPh3)3 (M = Cr, W) Derivatives. Inorganic Chemistry, 1996, 35, 4764-4769.	4.0	27
213	Zwitterionic Alternating Polymerization to Generate Semicrystalline and Recyclable Cyclic Polythiourethanes. ACS Macro Letters, 2020, 9, 866-871.	4.8	27
214	Non-Isocyanate and Catalyst-Free Synthesis of a Recyclable Polythiourethane with Cyclic Structure. ACS Sustainable Chemistry and Engineering, 2020, 8, 5693-5703.	6.7	27
215	Ligand substitution processes in tetranuclear carbonyl clusters. 9. Reactions of Co4(CO)9(tripod), tripod = HC(PPh2)3, and its derivatives. Organometallics, 1985, 4, 92-97.	2.3	26
216	Reversible decarboxylation of phosphine derivatives of Cu(I) cyanoacetate. Mechanistic aspects germane to catalytic decarboxylation of carboxylic acids. Journal of the American Chemical Society, 1993, 115, 8839-8840.	13.7	26

#	Article	IF	Citations
217	Structural characterization of bidentate carboxylate derivatives of copper(I) bistriphenylphosphine. Inorganica Chimica Acta, 1994, 227, 223-232.	2.4	26
218	Relative basicities of cyclic ethers and esters. Chemistry of importance to ring-opening co- and terpolymerization reactions. Polyhedron, 2013, 58, 139-143.	2.2	26
219	Copolymerization of carbon dioxide and cyclohexene oxide catalyzed by chromium complexes bearing semirigid [ONSO]-type ligands. Journal of Polymer Science Part A, 2016, 54, 1938-1944.	2.3	26
220	X-ray molecular structures of Mn(CO)5(O2CCF3) and Mn(CO)3(C5H5N)2(O2CCF3). Inorganic Chemistry, 1981, 20, 1287-1291.	4.0	25
221	Homogeneous catalysis of methyl formate production from carbon monoxide and methanol in the presence of metal carbonyl catalysts. Journal of Molecular Catalysis, 1985, 29, 285-290.	1.2	25
222	Synthesis and characterization of polynuclear chromium carbonyl tetraanions. Inorganic Chemistry, 1985, 24, 3465-3468.	4.0	25
223	Amino Acid Derivatives of Tungsten Carbonyl. Structure and Reactivity Investigations of Zerovalent Tungsten Glycine Derivatives. Inorganic Chemistry, 1994, 33, 5230-5237.	4.0	25
224	Trigonal-Planar Zinc(II) and Cadmium(II) Tris(phenoxide) Complexes. Inorganic Chemistry, 1999, 38, 1356-1359.	4.0	25
225	Synthesis and Structures of Nickel and Palladium Salicylaldiminato 1,3,5-Triaza-7-phosphaadamantane (PTA) Complexes. Inorganic Chemistry, 2003, 42, 6915-6922.	4.0	25
226	Further studies related to the copolymerization of cyclohexene oxide and carbon dioxide catalyzed by chromium Schiff base complexes. Crystal structures of two $\hat{l}/4$ -hydroxo-bridged Schiff base dimers of chromium(III). Inorganica Chimica Acta, 2007, 360, 523-528.	2.4	25
227	Carbon Monoxide Induced Reductive Elimination of Disulfide in an N-Heterocyclic Carbene (NHC)/ Thiolate Dinitrosyl Iron Complex (DNIC). Journal of the American Chemical Society, 2013, 135, 8423-8430.	13.7	25
228	Amphiphilic Polycarbonate Micellar Rhenium Catalysts for Efficient Photocatalytic CO ₂ Reduction in Aqueous Media. Angewandte Chemie - International Edition, 2022, 61, .	13.8	25
229	Preparation and structure of W(CO)5OPPh2NPPh3, a novel complex containing a ligand derived from the bis(triphenylphosphine)nitrogen($1+$) cation. Inorganic Chemistry, 1986 , 25 , $125-127$.	4.0	24
230	Coordination Complexes of Bis(triphenylphosphine) Copper(I) Carbonate and Bicarbonate. Inorganic Chemistry, 1995, 34, 5390-5394.	4.0	24
231	2-Thia-1,3,5-triaza-7-phosphaadamantane 2,2-Dioxide (PASO2). Comparative Structural and Reactivity Investigation with the Water-Soluble Phosphine Ligand 1,3,5-triaza-7-phosphaadamantane (PTA). Organometallics, 2003, 22, 2050-2056.	2.3	24
232	Mechanistic Study of Regio-Defects in the Copolymerization of Propylene Oxide/Carbonyl Sulfide Catalyzed by (Salen)CrX Complexes. Macromolecules, 2017, 50, 8426-8437.	4.8	24
233	Stereospecific photochemical reactions of Group VIb metal tetracarbonyl norbornadiene complexes with carbon-13 monoxide. Journal of the American Chemical Society, 1974, 96, 6511-6513.	13.7	23
234	Intramolecular hydrogen-bonding implications on the lability of the molybdenum-piperidine bond. Molecular structure of cis-Mo(CO)4[P(OCH3)3]NHC5H10. Inorganic Chemistry, 1977, 16, 2314-2317.	4.0	23

#	Article	IF	Citations
235	Chemical and infrared spectral details of reactions involving stereospecific incorporation of oxygen-18 into substituted manganese and rhenium carbonyl derivatives via exchange reactions with water (oxygen-18). Journal of the American Chemical Society, 1977, 99, 5940-5946.	13.7	23
236	Solid-state and solution structures of [PNP] [W(CO)5O2CCH3] and [PNP] [W(CO)4(PEt3)O2CCH3] and the carbonyl-labilizing ability of the acetato ligand in these anionic derivatives. Inorganic Chemistry, $1982, 21, 1656-1662$.	4.0	23
237	Potential intermediates in carbon dioxide reduction processes. Synthesis and structure of (.muformato)decacarbonyltriruthenium and (.muacetato)decacarbonyltriruthenium anions. Organometallics, 1983, 2, 1285-1291.	2.3	23
238	Metal-induced transformations of carbon dioxide. Carbon-carbon bond-forming processes involving anionic Group VIB metal derivatives, and the x-ray structure of [PNP][cis-MeW(CO)4PMe3]. Journal of the American Chemical Society, 1984, 106, 3672-3673.	13.7	23
239	Chemistry of zerovalent tungsten alkoxides. Synthesis, x-ray structure and reactivity toward carbon dioxide. Inorganic Chemistry, 1990, 29, 1789-1791.	4.0	23
240	Facile Synthesis of Wellâ€Defined Branched Sulfurâ€Containing Copolymers: Oneâ€Pot Copolymerization of Carbonyl Sulfide and Epoxide. Angewandte Chemie - International Edition, 2020, 59, 13633-13637.	13.8	23
241	Infrared intensities of the carbonyl stretching vibrations in cyclopentadienyliron dicarbonyl derivatives. Inorganic Chemistry, 1972, 11, 1606-1609.	4.0	22
242	Selective homogeneous production of alkyl formate from CO and alcohol using metal carbonyl/alkoxide catalyst systems. Journal of Molecular Catalysis, 1987, 41, 329-347.	1.2	22
243	Structural characterizations of coordination complexes of bis-triphenylphosphine copper(I) dicarboxylates. Polyhedron, 1996, 15, 2341-2349.	2.2	22
244	Structural and Spectroscopic Studies of 16-Electron, Unsaturated Derivatives of Low-Valent, Group 6 Carbonyl Complexes Containing π-Donor Ligands. Inorganic Chemistry, 1999, 38, 4705-4714.	4.0	22
245	Five-coordinate Schiff base complexes of gallium. Potential catalysts for the copolymerization of carbon dioxide and epoxides. Comptes Rendus Chimie, 2004, 7, 755-761.	0.5	22
246	Synthesis of cyclic monothiocarbonates via the coupling reaction of carbonyl sulfide (COS) with epoxides. Catalysis Science and Technology, 2016, 6, 188-192.	4.1	22
247	Infrared intensities and calculation of infrared band shapes of the carbon monoxide stretching vibrations in substituted tungsten carbonyl derivatives. Inorganic Chemistry, 1973, 12, 1075-1081.	4.0	21
248	The X-ray structural characterization of a tetrameric binuclear bis ($\hat{l}\frac{1}{4}$ -oxo) molybdenum(V) compound bridged by methoxide ligands. Inorganica Chimica Acta, 1985, 98, L39-L42.	2.4	21
249	Ligand substitution processes in tetranuclear carbonyl clusters. 10. X-ray structural characterization of products resulting from reactions of nonacarbonyl[tris(diphenylphosphino)methane]tetracobalt with phosphine ligands. Inorganic Chemistry, 1986, 25, 3281-3290.	4.0	21
250	Chromium Tricarbonyl Catecholate Derivatives. Structural and Reactivity Studies of "16-Electron" Complexes. Inorganic Chemistry, 1995, 34, 4676-4681.	4.0	21
251	Relative importance of .sigma. and .pi. bonding of molecular nitrogen and carbonyl in osmium(II) complexes as determined by infrared intensities of the molecular nitrogen and carbonyl stretching vibrations. Inorganic Chemistry, 1971, 10, 2399-2403.	4.0	20
252	Stereospecific introduction of carbon monoxide into metal carbonyl chelate complexes. Journal of Organometallic Chemistry, 1974, 66, C11-C13.	1.8	20

#	Article	IF	CITATIONS
253	Phase-transfer catalyzed oxygen-18 labeling studies of carbonyl ligands in neutral metal carbonyl derivatives. Journal of the American Chemical Society, 1978, 100, 338-340.	13.7	20
254	Reaction of iron pentacarbonyl with oxygen-18-enriched hydroxide. Decarboxylation vs. oxygen exchange in the [Fe(COOH)] intermediate. Inorganic Chemistry, 1979, 18, 1401-1402.	4.0	20
255	Stereochemical studies of the carbon dioxide insertion reactions into the tungsten-alkyl bond. Journal of the American Chemical Society, 1985, 107, 7473-7476.	13.7	20
256	Carbon dioxide insertion processes involving metal-carbon bonds: solid-state and solution structure of (18-crown-6) sodium pentacarbonylmethyltungstate(1-). Inorganic Chemistry, 1987, 26, 977-980.	4.0	20
257	Further studies on the role of neighboring group participation in carbonyl substitution reactions of group 6 metal carboxylates. Inorganic Chemistry, 1991, 30, 1137-1142.	4.0	20
258	The effect of phosphonium salt formation on the kinetics of homogeneous hydrogenations in water utilizing a rhodium meta-sulfonatophenyl-diphenylphosphine complex. Journal of Molecular Catalysis, 1993, 84, 157-163.	1,2	20
259	CO-Labilizing Ability of the Fluoride Ligand in Tungsten(0) Carbonyl Fluorides. X-ray Structure of [Et4N]3[W2(CO)6F3]. Inorganic Chemistry, 1995, 34, 4933-4934.	4.0	20
260	The propensity of alkoxide and aryloxide derivatives of tungsten carbonyls to aggregate in solution. Synthesis and X-ray structures of dinuclear, trinuclear and tetranuclear complexes derived from the MeOW(CO)5â° anion. Inorganica Chimica Acta, 1998, 270, 405-413.	2.4	20
261	Methylene (Carbene) Complexes of Transition Metals. Inorganic Syntheses, 2007, , 164-172.	0.3	20
262	Carbon Dioxide Copolymerization Study with a Sterically Encumbering Naphthalene-Derived Oxide. ACS Catalysis, 2015, 5, 5421-5430.	11.2	20
263	One-Pot Synthesis of Ion-Containing CO ₂ -Based Polycarbonates Using Protic Ionic Liquids as Chain Transfer Agents. Macromolecules, 2018, 51, 9122-9130.	4.8	20
264	Further studies of the unusual nature of tris (.betacyanoethyl) phosphine: structures of the phosphine and the phosphine oxide. Inorganic Chemistry, 1981, 20, 1869-1872.	4.0	19
265	A linear, monomeric copper(I) acetate derivative, bis[bis(phenanthroline)copper] bis(acetato)cuprate(1-) hydrogen bis(acetate). An effective catalyst for the decarboxylation of carboxylic acids. Inorganic Chemistry, 1992, 31, 3951-3955.	4.0	19
266	The catalytic decarboxylation of cyanoacetic acid: anionic tungsten carboxylates as homogeneous catalysts. Journal of the American Chemical Society, 1993, 115, 4675-4682.	13.7	19
267	Kinetics and thermodynamics of the decarboxylation of 1,2-glycerol carbonate to produce glycidol: computational insights. Green Chemistry, 2014, 16, 247-252.	9.0	19
268	Nature of the intermediate procreated in substitution reactions of Group VI metal carbonyls. Journal of the American Chemical Society, 1971, 93, 2807-2808.	13.7	18
269	Reactions of cryptand-solubilized sodium sulfide (NaSH) in aprotic solvents with the Group 6B metal hexacarbonyls. X-ray structural analysis and ligand lability studies of the isolated M(CO)5SH- anions. Organometallics, 1982, 1, 1161-1166.	2.3	18
270	A convenient route to carbon-13-enriched triruthenium dodecacarbonyl. Chemistry relevant to methyl formate production from carbon monoxide and methanol. Organometallics, 1984, 3, 1928-1930.	2.3	18

#	Article	IF	CITATIONS
271	Kinetics of the thermal decomposition and substitution reactions of molybdenum pentacarbonyl amine compounds. Inorganic Chemistry, 1968, 7, 1679-1680.	4.0	17
272	Synthesis and x-ray crystal structure of zerovalent tungsten aryloxide dimers. Inorganic Chemistry, 1988, 27, 3269-3270.	4.0	17
273	An Experimental and Theoretical Investigation of the Carbon Dioxide Insertion Process into the Tungstenâ°'Nitrogen Bond of an Anionic W(0) Complex. Inorganic Chemistry, 2001, 40, 1993-1999.	4.0	17
274	Copolymerization of Epoxides and CO ₂ : Polymer Chemistry for Incorporation in Undergraduate Inorganic Chemistry. Journal of Chemical Education, 2017, 94, 1691-1695.	2.3	17
275	Placing Single-Metal Complexes into the Backbone of CO2-Based Polycarbonate Chains, Construction of Nanostructures for Prospective Micellar Catalysis. Organometallics, 2020, 39, 1612-1618.	2.3	17
276	Sustainable synthesis of CO ₂ -derived polycarbonates from <scp>d</scp> -xylose. Polymer Chemistry, 2021, 12, 5271-5278.	3.9	17
277	Reaction of cationic Group 7B metal carbonyl derivatives with sodium hydrogen sulfide. Production of metal hydrides. Inorganic Chemistry, 1977, 16, 960-962.	4.0	16
278	Ligand substitution process in tetranuclear metal carbonyl clusters. Journal of Organometallic Chemistry, 1979, 171, 89-96.	1.8	16
279	Structural characterizations of cis-Mo(CO)4(PPhMe2)(NHC5H10) and cis-Mo(CO)4(PPhMe2)(PPh3) and their solution reactivities toward carbon monoxide. Inorganic Chemistry, 1982, 21, 1651-1655.	4.0	16
280	Comparative reactivities of anionic group 6 alkyl, silyl, and stannyl pentacarbonyl metalates toward carbon dioxide and sulfur dioxide. Crystal structure of bis(triphenylphosphine)nitrogen(1+) pentacarbonyl(trimethylsilyl)tungstate(1-). Inorganic Chemistry, 1988, 27, 4203-4207.	4.0	16
281	SYNTHESIS AND STRUCTURE OF 1,2-BIS(DIPHENYLPHOSPHINO)ETHANE COMPLEXES OF COPPER(I) ACETATE. CATALYSTS FOR THE DECARBOXYLATION OF CARBOXYLIC ACIDS. Journal of Coordination Chemistry, 1994, 32, 27-37.	2.2	16
282	Crystal structures of aryloxide complexes of zinc embracing sodium aryl group interactions: Na[Zn(2,6-diphenylphenoxide)3(H2O)] and Na[Zn2(2,6-diisopropylphenoxide)4Cl]·3THF. Inorganica Chimica Acta, 1998, 274, 115-121.	2.4	16
283	Diamond-Shaped Heterometallic Complexes of Iron(II) and Copper(I) Bridged by Cyanide Groups. Inorganic Chemistry, 1999, 38, 1378-1379.	4.0	16
284	Infrared intensities of the molecular nitrogen and carbonyl stretching vibrations in iridium(I) complexes. Inorganic Chemistry, 1971, 10, 431-432.	4.0	15
285	Evidence for the fluxionality and structure in solution of intermediates of the type $W(CO)4(L)$ (L =) Tj ETQq1 1 0.	784314 rg	gBT ₅ /Overlo <mark>ck</mark>
286	Preparation of oxygen-18-labeled derivatives of [Mn(CO)3(diphos)H] via reaction of [Mn(CO)4(diphos)][PF6] with water (oxygen-18) in the presence of triethylamine. Decarboxylation of a [Mn(COOH)] intermediate. Inorganic Chemistry, 1978, 17, 3300-3302.	4.0	15
287	Oxygen-Exchange and Ligand Substitution Reactions in Cr(CO)6 and \hat{l}^4 -H[Cr(CO)5]2-, and the Water Gas Shift Reaction. Advances in Chemistry Series, 1979, , 106-120.	0.6	15
288	Photochemically enhanced carbon-carbon bond-forming reaction between carbon disulfide and methylpentacarbonyltungstate. X-ray structure of [PPN][W(CO)4(.eta.2-S2CCH3)]. Organometallics, 1991, 10, 6-8.	2.3	15

#	Article	IF	Citations
289	Structural Diversity in Monomeric Cadmium Phenoxides. Inorganic Chemistry, 1997, 36, 5686-5688.	4.0	15
290	X-Ray crystal structures of five-coordinate (salen)MnN3 derivatives and their binding abilities towards epoxides: chemistry relevant to the epoxide–CO2 copolymerization process. Dalton Transactions, 2008, , 5031.	3.3	15
291	Studies of the Carbon Dioxide and Epoxide Coupling Reaction in the Presence of Fluorinated Manganese(III) Acacen Complexes: Kinetics of Epoxide Ring-Opening. Inorganic Chemistry, 2008, 47, 4977-4987.	4.0	15
292	The synthesis and spectral properties of manganese pentacarbonyl phosphine and phosphite cation derivatives and related complexes. Journal of Organometallic Chemistry, 1974, 74, C33-C36.	1.8	14
293	Stereospecific incorporation of oxygen-18 into manganese and rhenium pentacarbonyl derivatives via exchange reactions with water (oxygen-18). Journal of the American Chemical Society, 1976, 98, 275-276.	13.7	14
294	Photochemistry of piperidine pentacarbonyl complexes of the Group 6B metals isolated in an argon matrix at 10 K. Inorganic Chemistry, 1980, 19, 3455-3461.	4.0	14
295	Synthesis of metal carbonyl complexes highly enriched in carbon-13: utilization of the carbon monoxide-labilizing ability of (n-Bu)3P:O. Journal of the American Chemical Society, 1980, 102, 1213-1214.	13.7	14
296	Crystal and molecular structure of dicarbonyl (.eta.5-cyclopentadienyl) (formato) iron (II). Inorganic Chemistry, 1981, 20, 3577-3579.	4.0	14
297	Intermediates in the reaction of trans-Cr(CO)4(PPh3)2 with carbon-13 monoxide and fluxionality in octahedral Group VIB metal carbonyls via a nondissociative mechanism. Inorganic Chemistry, 1982, 21, 2488-2491.	4.0	14
298	Carbon monoxide ligand substitutional processes involving anionic Group 6 metal carboxylates and their relevance to decarboxylation mechanisms. Inorganic Chemistry, 1990, 29, 592-597.	4.0	14
299	Anionic Group 6 metal carbonyl oxalate complexes. X-ray structures of [Et4N]2[W(CO)4C2O4] and [PPN]2[W2(CO)8C2O4].cntdot.1/2(CH3CH2)2O. Inorganic Chemistry, 1992, 31, 3428-3433.	4.0	14
300	Aryloxide and Alkoxide Derivatives of Metal Clusters. Syntheses, Structures, and Reactivities of the .muOxo-Bridged Triruthenium Clusters Ru3(CO)8(.mueta.2-OC6H4Cl)2 and Ru3(CO)8(.mueta.2-OCH2C5H4N)2. Inorganic Chemistry, 1994, 33, 3526-3532.	4.0	14
301	Organometallic Complexes of Uracil and Orotic Acid Derivatives: Coordination Mode, Structure, and Reactivity. European Journal of Inorganic Chemistry, 2000, 2000, 2487-2495.	2.0	14
302	What is the Real Steric Impact of Triphenylphosphite? Solid-State and Solution Structural Studies of $\langle i \rangle cis \langle i \rangle - and \langle i \rangle trans \langle i \rangle - lsomers of M(CO) \langle sub \rangle 4 \langle sub \rangle [P(OPh) \langle sub \rangle 3 \langle sub \rangle] \langle sub \rangle 2 \langle sub \rangle (M = Mo) Tj Equation (M) (M) (M) (M) (M) (M) (M) (M) (M) (M)$	TQzq8 0 0	rg B4 /Overloo
303	Kinetic and Thermodynamic Investigations of CO2Insertion Reactions into Ru-Me and Ru-H Bonds - An Experimental and Computational Study. European Journal of Inorganic Chemistry, 2013, 2013, 4024-4031.	2.0	14
304	Photochemical reactions of transition-metal dinitrogen compounds in the presence of carbon monoxide. Inorganic and Nuclear Chemistry Letters, 1972, 8, 529-532.	0.7	13
305	Oxygen Exchange Reactions of Cationic Carbonyl Derivatives of Manganese and Rhenium with H ₂ ¹⁸ O and Related Processes. Israel Journal of Chemistry, 1976, 15, 247-252.	2.3	13
306	The solution behavior of unsaturated molybdenum carbonyl species as evidenced via stereospecific carbon-13 monoxide labeling studies. Journal of the American Chemical Society, 1978, 100, 4119-4124.	13.7	13

#	Article	IF	CITATIONS
307	Synthesis and characterization of sulfur-capped trinuclear group 6B metal clusters. Organometallics, 1984, 3, 1598-1600.	2.3	13
308	Solution 31P and 113Cd NMR Studies of Phosphine Adducts of Monomeric Cadmium (Bisphenoxide) Complexes and the Solid-State Structures of (2,6-Di-tert-butylphenoxide)2Cd(PCy3) and (2,6-Di-tert-butylphenoxide)2Cd(PMe3)2. Inorganic Chemistry, 2000, 39, 473-479.	4.0	13
309	Ligand Displacement from TpMn(CO) < sub>2 < /sub>L Complexes: A Large Rate Enhancement in Comparison to the CpMn(CO) < sub>2 < /sub>L Analogues. Organometallics, 2011, 30, 3054-3063.	2.3	13
310	Hammett correlations as test of mechanism of CO-induced disulfide elimination from dinitrosyl iron complexes. Chemical Science, 2014, 5, 3795-3802.	7.4	13
311	Approach for Introducing a Single Metal Complex into a Polymer Chain: Metallo-Chain Transfer Agents in CO ₂ or COS/Epoxide Copolymerization Processes. Macromolecules, 2019, 52, 5217-5222.	4.8	13
312	The Use of 1,3,5-Triaza-7-Phosphaadamantane (PTA), A Water-Soluble , Air Stable Ligand, in Organometallic Chemistry and Catalysis. , 1995, , 61-80.		13
313	Oxygen-18 isotope shifts on the 13C nuclear magnetic resonance of metal carbonyl derivatives. Journal of Organometallic Chemistry, 1979, 174, C70-C76.	1.8	12
314	Binucleating Coordination ofN,Nâ€~-Ethylenebis(salicylideneamine) (H2salen) to Low-Valent Group 6 Carbonyl Complexes. Inorganic Chemistry, 1998, 37, 5383-5386.	4.0	12
315	A Kinetic Study of the Ring-Opening Process in Tungsten Carbonyl Complexes Containing Hemilabile Metallodithiolate Ligands. Inorganic Chemistry, 2006, 45, 119-126.	4.0	12
316	Displacement Kinetics of Î- ² -Bound Furan and 2,3-Dihydrofuran from Mn and Cr Centers: Evidence for the Partial Dearomatization of the Furan Ligand. Inorganic Chemistry, 2009, 48, 7787-7793.	4.0	12
317	Salen Metal Complexes as Catalysts for the Synthesis of Polycarbonates from Cyclic Ethers and Carbon Dioxide. Advances in Polymer Science, 2011, , 1-27.	0.8	12
318	Mechanism of CO Displacement from an Unusually Labile Rhenium Complex: An Experimental and Theoretical Investigation. Inorganic Chemistry, 2012, 51, 13041-13049.	4.0	12
319	Thermal Dehydrogenation of Dimethylamine Borane Catalyzed by a Bifunctional Rhenium Complex. Organometallics, 2019, 38, 2602-2609.	2.3	12
320	Infrared determination of stereochemistry in metal complexes. The determination of symmetry coordinates. Journal of Chemical Education, 1974, 51, 787.	2.3	11
321	Solution photochemistry of anionic metal carbonyl hydride derivatives. Substitution and dimer disruption processes in .mu $H[M(CO)5]2$ - (M = chromium and tungsten). Inorganic Chemistry, 1979, 18, 18-22.	4.0	11
322	Kinetic studies of ligand substitution reactions and general-base catalysis in amine-ligand exchange processes for Group 6B metal carbonyl amine derivatives. Kinetic and spectroscopic evidence for hydrogen-bonded intermediates. Inorganic Chemistry, 1981, 20, 4168-4177.	4.0	11
323	The Importance of Reactions of Oxygen Bases with Metal Carbonyl Derivatives in Catalysis. ACS Symposium Series, 1981, , 107-121.	0.5	11
324	FT-IR, photoacoustic and micro-Raman spectra of the dodecacarbonyltriruthenium (O) complexes Ru3(13CO)12and Ru3(CO)12. Journal of Raman Spectroscopy, 1987, 18, 357-363.	2.5	11

#	Article	IF	CITATIONS
325	Structural and reactivity studies of a cyanoacetic acid derivative of tungsten pentacarbonyl. X-ray structure of W(CO)5NCCH2COOH. Inorganic Chemistry, 1992, 31, 4475-4480.	4.0	11
326	Rational Synthesis of Dinuclear Mixed-Valence Cu(I)/Cu(II)Carboxylate Derivatives. Steric Influence of Phosphine Ligands on the Structures of the Complexes. Inorganic Chemistry, 1994, 33, 2036-2040.	4.0	11
327	113Cd NMR Determination of the Binding Parameters of Alicyclic Epoxides to [Hydrotris(3-phenylpyrazol-1-yl)borate]Cd(II) Acetate. Organometallics, 2004, 23, 5286-5290.	2.3	11
328	Structural Characterization of Several (CO)3(dppp)MnX Derivatives, dppp = $1,3$ -Bis(diphenylphosphino)propane and X = H, OTs, OC2H5, Cl, Br, or N3. An Assessment of Their Efficacy for Catalyzing the Coupling of Carbon Dioxide and Epoxides. Organometallics, 2004, 23, 6025-6030.	2.3	11
329	Biomimetic study of a polymeric composite material for joint repair applications. Journal of Materials Research, 2007, 22, 1632-1639.	2.6	11
330	Time Resolved Infrared Spectroscopy: Kinetic Studies of Weakly Binding Ligands in an Iron–Iron Hydrogenase Model Compound. Inorganic Chemistry, 2012, 51, 7362-7369.	4.0	11
331	Acrylic Acid Derivatives of Group 8 Metal Carbonyls: A Structural and Kinetic Study. Inorganic Chemistry, 2013, 52, 5438-5447.	4.0	11
332	Syntheses and Structures of [CH _{2< sub>(NC_{<i>n< i>< sub>H_{<i>2< sub>)_{2< sub>]Mo(CO)_{4< sub> (<i>n< i>= 4,5) Complexes with Bis(cycloamine) Ligands Easily Prepared from CH_{2< sub>Cl_{2< sub>Cl_{2< sub>Cl_{Cl_{2< sub>Cl_{Cl_{Cl_{Ch_C}}</i>}}</i>}</i>}}	2.3	11
333	Explorations into the sustainable synthesis of cyclic and polymeric carbonates and thiocarbonates from eugenol-derived monomers and their reactions with CO ₂ , COS, or CS ₂ . Green Chemistry, 2022, 24, 2535-2541.	9.0	11
334	Amphiphilic Polycarbonate Micellar Rhenium Catalysts for Efficient Photocatalytic CO2 Reduction in Aqueous Media. Angewandte Chemie, 0, , .	2.0	11
335	Correlation between the stretching frequency and the absolute infrared intensity of the dinitrogen ligand in isoelectronic transition metal compounds. Inorganic Chemistry, 1972, 11, 1436-1437.	4.0	10
336	Kinetic ambiguity between the Id and D mechanisms in ligand substitution reactions. The intimate mechanism for axial base-ligand exchange reactions in alkyl(base)cobaloximes and related species. Journal of the American Chemical Society, 1976, 98, 4317-4319.	13.7	10
337	Infrared intensities and calculation of infrared band shapes of the .nu.(carbonyl) and .nu.(carbon:carbon) vibrational modes in Group 6B (norbornadiene)tetracarbonylmetal derivatives. Inorganic Chemistry, 1977, 16, 534-540.	4.0	10
338	Reactions of M2Cl4(PR3)4 (M \hat{i} —» Mo and W) with carbon monoxide. Journal of Organometallic Chemistry, 1981, 217, C14-C16.	1.8	10
339	Multinuclear Metal Carbonyl Alkoxide and Aryloxide Derivatives as Models for Metal Carbonyls Adsorbed on Metal Oxide Supports. Israel Journal of Chemistry, 1990, 30, 369-376.	2.3	10
340	Synthesis and Structural Characterization of Potassium Salts of Phosphane-Substituted (Cyclopentadienyl)iron Dicyanides, and Their Use as Bridging Ligands for Copper(I) Phosphane Derivatives. European Journal of Inorganic Chemistry, 2003, 2003, 3639-3648.	2.0	10
341	Design of Betaine Functional Catalyst for Efficient Copolymerization of Oxirane and CO2. Macromolecules, 2018, 51, 6057-6062.	4.8	10
342	Evidence for hydrogen-bonded intermediates in amine substitution reactions involving Group 6B metal pentacarbonyl amine derivatives with phosphines. Journal of the American Chemical Society, 1975, 97, 6874-6876.	13.7	9

#	Article	IF	Citations
343	Carbon dioxide insertion and deinsertion processes involving metal-carbon bonds: solid-state structure of [PPN][W(CO)5CH2CN]. Organometallics, 1991, 10, 3407-3410.	2.3	9
344	The synthesis and X-ray structure of a phenoxide-bridged heterobimetallic anion, W(CO)5OPh(Cr(CO)3) â^', and its reactivity with carbon dioxide and carbonyl sulfide. Journal of Organometallic Chemistry, 1993, 451, 83-87.	1.8	9
345	Synthesis and Characterization of a Monocyanide-Bridged Bimetallic Iron(II) and Copper(I) Complex. Inorganic Chemistry, 2001, 40, 6533-6536.	4.0	9
346	Synthesis, characterization and crystal structure of a zinc bis-dithiocarboxylate derivative. Inorganic Chemistry Communication, 2002, 5, 38-41.	3.9	9
347	Ligand Substitution from the $(\hat{l} \cdot \text{sup} \cdot 5 \cdot /\text{sup} \cdot -\text{DMP}) \text{Mn(CO)} \cdot \text{sub} \cdot 2 \cdot /\text{sub} \cdot (\text{Solv})$ [DMP = 2,5-dimethylpyrrole, Solv = solvent] Complexes: To Ring Slip or Not to Ring Slip?. Inorganic Chemistry, 2010, 49, 7597-7604.	4.0	9
348	Preparation of dinitrogen-rhenium complexes with tertiary arsines as coligands. Interaction of indium trichloride with rhenium(I)-dinitrogen species. Inorganic Chemistry, 1974, 13, 1532-1534.	4.0	8
349	Preparation of a stereospecifically carbon-13 monoxide-labeled [(.muH)[Mo(CO)5]2]- species and analysis of its carbonyl stretching vibrational modes. Inorganic Chemistry, 1978, 17, 2677-2680.	4.0	8
350	Intramolecular hydrogen-bonding implications on the lability of the molybdenum-piperidine bond. Kinetic and mechanistic studies of the reaction of cis-Mo(CO)4[P(OCH3)3]NHC5H10 with carbon monoxide. Inorganic Chemistry, 1979, 18, 2821-2825.	4.0	8
351	Synthesis and x-ray structure of anionic chelating phosphine-acyl derivative of tungsten, [cyclic] [PPh4][W(CO)4C(O)CH2CH2CH2PPh2], and the reactivity of its decarbonylated analog with carbon dioxide. Organometallics, 1985, 4, 1094-1097.	2.3	8
352	Chemical and structural characterization of W(CO)5OPPh2NPPh3. A novel tungsten carbonyl complex containing a phosphine oxide ligand derived from the bis(triphenylphosphine)nitrogen(1+) cation. Inorganic Chemistry, 1986 , 25 , $3537-3541$.	4.0	8
353	Preparation and solid-state structure of a novel carboxylate derivative of copper(I), (Ph3P)2Cu(O2CCH2CN)2H. Inorganic Chemistry, 1991, 30, 357-358.	4.0	8
354	Tricyclohexylphosphine Derivatives of Bis(2,6-difluorophenoxide)cadmium:Â A Solution and Solid-State NMR Study. Inorganic Chemistry, 2001, 40, 3639-3642.	4.0	8
355	Tricarbonyl(Hydrido) [1,2-Bis (Diphenyl-phosphino)Ethane]Manganese as Precursor to Labile Site Derivatives. Inorganic Syntheses, 2007, , 298-302.	0.3	8
356	Estimating the strength of the M–H–B interaction: a kinetic approach. Dalton Transactions, 2013, 42, 6720.	3.3	8
357	Stereospecific incorporation of 13CO into olefinic substituted metal carbonyl compounds. Journal of Organometallic Chemistry, 1976, 117, C90-C92.	1.8	7
358	Origin of the structure in M-H-M vibrational modes of decacarbonylhydroditungstate(1-). Inorganic Chemistry, 1979, 18, 1407-1408.	4.0	7
359	On the use of 13Cî—,13C coupling in establishing intramolecular versus intermolecular CO ligand reaarangement processes in metal carbonyl derivatives. Journal of Organometallic Chemistry, 1981, 209, C37-C40.	1.8	7
360	Ligand substitution processes in tetranuclear carbonyl clusters. 8. Reactions of dodecacarbonyltetracobalt (Co4(12CO)12/Co4(13CO)12) with phosphorus donor ligands. Further evidence for cluster integrity during ligand substitution processes. Inorganic Chemistry, 1984, 23, 4382-4384.	4.0	7

#	Article	lF	CITATIONS
361	Crystal structure of di-1¼-chloro-tris(triphenylphosphine)dicopper(I)-dichloromethane, C ₅₅ H ₄₇ Cl ₄ Cu ₂ P ₃ . Zeitschrift Fur Kristallographie - Crystalline Materials, 1995, 210, 615-616.	0.8	7
362	Intermolecular hydrogen-bonding in the solid-state structure of CpFe(CN)2(PTAH). Journal of Organometallic Chemistry, 2003, 666, 49-53.	1.8	7
363	Personal Adventures in the Synthesis of Copolymers from Carbon Dioxide and Cyclic Ethers. Advances in Inorganic Chemistry, 2014, , 1-23.	1.0	7
364	Cyanide Docking and Linkage Isomerism in Models for the Artificial [FeFe]-Hydrogenase Maturation Process. Journal of the American Chemical Society, 2018, 140, 9904-9911.	13.7	7
365	Synthesis of terpyridine-containing polycarbonates with post polymerization providing water-soluble and micellar polymers and their metal complexes. Polymer Chemistry, 2020, 11, 4699-4705.	3.9	7
366	Randomly Distributed Sulfur Atoms in the Main Chains of CO ₂ â€Based Polycarbonates: Enhanced Optical Properties. Angewandte Chemie, 2021, 133, 4361-4367.	2.0	7
367	The interaction of Lewis bases with (acyrlic acid) iron tetracarbonyl in solution. Journal of Organometallic Chemistry, 1973, 54, C39-C44.	1.8	6
368	Kinetic studies of phosphine and phosphite exchange reactions of substituted iron tricarbonyl carbene complexes. Competitive study of Lewis bases for the intermediate tricarbonyl (methyl ethyloxy) Tj ETQqC	0400rgBT	∕Oøerlock 10
369	The lack of intramolecular carbonyl ligand rearrangement in the stereospecifically 13co labelled (diamine)molybdenum tetracarbonyl derivatives. Journal of Organometallic Chemistry, 1977, 137, C1-C7.	1.8	6
370	Metal-Induced Transformations of Carbon Dioxide. ACS Symposium Series, 1988, , 26-41.	0.5	6
371	TEMPO Containing Radical Polymonothiocarbonate Polymers with Regio―and Stereoâ€Regularities: Synthesis, Characterization, and Electrical Conductivity Studies. Angewandte Chemie - International Edition, 2021, 60, 20734-20738.	13.8	6
372	Intramolecular ligand rearrangements in anionic group 6 metal pentacarbonyl hydride derivatives. Inorganic Chemistry, 1986, 25, 880-882.	4.0	5
373	Solid-state and solution structure of (2,2'-bipyridine)(tetracarbonylcobalt)copper. Inorganic Chemistry, 1990, 29, 4637-4640.	4.0	5
374	Structure of Ru4(CO)8(O2CCH2CH=CH2)4(NMe3)2. Acta Crystallographica Section C: Crystal Structure Communications, 1993, 49, 1619-1621.	0.4	5
375	Cyanide Compounds. Inorganic Syntheses, 2004, , 133-183.	0.3	5
376	Facile Synthesis of Wellâ€Defined Branched Sulfurâ€Containing Copolymers: Oneâ€Pot Copolymerization of Carbonyl Sulfide and Epoxide. Angewandte Chemie, 2020, 132, 13735-13739.	2.0	5
377	Synthetic Metallodithiolato Ligands as Pendant Bases in [Fe ^I Fe ^I], [Fe ^I [Fe(NO)] ^{II}], and [(μ-H)Fe ^{II} Fe ^{II}] Complexes. Inorganic Chemistry, 2020, 59, 3753-3763.	4.0	5
378	Chromium, molybdenum, and tungsten. Journal of Organometallic Chemistry, 1981, 223, 49-116.	1.8	4

#	Article	IF	CITATIONS
379	Crystal structure of tetraethylammonium bis(catecholato)-dioxo-molybdenum(VI), C ₂₈ H ₄₈ MoN ₂ O ₆ . Zeitschrift Fur Kristallographie - Crystalline Materials, 1994, 209, 761-762.	0.8	4
380	Crystal structure of tetraethylammonium bis(3,5-di-(<i>tert</i> -butyl)-catecholate)dioxorhenate, C ₃₆ H ₆₀ NO ₆ Re. Zeitschrift Fur Kristallographie - Crystalline Materials, 1996, 211, 501-502.	0.8	4
381	Potassium μ-Hydrido-Bis[Pentacarbonylchromate(0)] and Potassium μ-Hydrido-Bis[Pentacarbonyltungstate(0)]. Inorganic Syntheses, 2007, , 27-32.	0.3	4
382	Photochemically Generated Transients from $\hat{l}^2 < \sup > 2 < \sup > -$ and $\hat{l}^2 < \sup > 3 < \sup > -$ Triphos Derivatives of Group 6 Metal Carbonyls and Their Reactivity with Olefins. Organometallics, 2012, 31, 3163-3170.	2.3	4
383	Time-Resolved Infrared Spectroscopy Studies of Olefin Binding in Photogenerated CpRu(CO)X (X = Cl, I) Transients. Organometallics, 2012, 31, 3972-3979.	2.3	4
384	The nature of binuclear dinitrogen complexes of rhenium(I) and rhenium(V) in solution. Inorganica Chimica Acta, 1972, 6, 527-530.	2.4	3
385	Chromium, molybdenum and tungsten. Journal of Organometallic Chemistry, 1974, 83, 309-425.	1.8	3
386	A thermal route to stereospecifically 13CO labelled group VIB metal pentacarbonyl amine derivatives. Journal of Organometallic Chemistry, 1977, 140, C29-C32.	1.8	3
387	New Methods for Acquiring IR Spectral Data in Organometallic Chemistry and Catalysis. ACS Symposium Series, 1987, , 230-256.	0.5	3
388	Structure of [Cu2(dmpe)3Cl2]n.2CH2Cl2. Acta Crystallographica Section C: Crystal Structure Communications, 1993, 49, 1140-1142.	0.4	3
389	Crystal structure of diphenylphosphinepentacarbonyltungsten(0), (C ₆ H ₅) ₂ PH(CO) ₅ W. Zeitschrift Fur Kristallographie - Crystalline Materials, 1994, 209, 759-760.	0.8	3
390	Crystal structure of tricyclohexylphosphine sulfide, (C6H11)3PS. Zeitschrift Fur Kristallographie - Crystalline Materials, 1996, 211, 400-400.	0.8	3
391	Synthesis and crystal structure of [H2B(3-Phpz)2]2Zn. Journal of Organometallic Chemistry, 2000, 614-615, 305-308.	1.8	3
392	(S,S)-2,3-Bis[Di(m-Sodiumsulfonatophenyl)-Phosphino]Butane (Chiraphosts) and (S,S)-2,4-Bis[Di(m) Tj ETQq0	0	Ovgrlock 10 ⁻
393	Light-Enhanced Displacement of Methyl Acrylate from Iron Carbonyl: Investigation of the Reactive Intermediate via Rapid-Scan Fourier Transform Infrared and Computational Studies. Inorganic Chemistry, 2013, 52, 12655-12660.	4.0	3
394	Kinetic studies of thermal dissociation of carbon monoxide ligands from manganese tri- and tetra-carbonyl derivatives containing the bulky dipiperidylmethane ligand, CH2Pip2. Inorganica Chimica Acta, 2019, 484, 443-449.	2.4	3
395	Copolymerization of propylene oxide and 13CO2 to afford completely alternating regioregular 13C-labeled Poly(propylene carbonate). Polymer Journal, 2021, 53, 215-218.	2.7	3
396	Crystal structure of bis(hydro(tris-3-phenylpyrazolyl)borate)-cadmium(II), C27H21BCd0.50N6. Zeitschrift Fur Kristallographie - Crystalline Materials, 1995, 210, 617-618.	0.8	3

#	Article	IF	CITATIONS
397	Chromium, molybdenum and tungsten. Journal of Organometallic Chemistry, 1973, 62, 299-410.	1.8	2
398	Infrared intensity measurements of the Ptâ€H stretching vibration in Pt(II) complexes and their relationship to similar measurements for hydrogen chemisorbed on platinum. Journal of Chemical Physics, 1973, 59, 3869-3870.	3.0	2
399	Chromium, molybdenum and tungsten. Journal of Organometallic Chemistry, 1976, 115, 221-325.	1.8	2
400	Concomitant bond formation and bond fission in the mass spectral fragmentation of an organometallic molecule. Journal of the Chemical Society Chemical Communications, 1979, , 409.	2.0	2
401	Facile Reduction of Carbon Dioxide by Anionic Group 6B Metal Hydrides. Chemistry Relevant to Catalysis of the Water-Gas Shift Reaction - Correction. Journal of the American Chemical Society, 1982, 104, 1156-1156.	13.7	2
402	Homogeneous catalytic synthesis of formaldehyde using the tungsten carbonyl complex [(CO)5WCl]â^' in the presence of sodium methoxide. Journal of Molecular Catalysis, 1994, 93, 125-136.	1.2	2
403	Crystal structure of <i>μ</i> -N,N′-malodinitrile-bis(pentacarbonyltungsten) methylene chloride, C ₁₃ H ₄ Cl ₂ N ₂ O ₁₀ W. Zeitschrift Fur Kristallographie - Crystalline Materials, 1994, 209, 379-380.	0.8	2
404	Crystal structure of bis(tetraethylammonium) hexafluorotungstate(IV) dihydrate, ((C ₂ H ₅) ₄ N) ₂ (WF ₆)(H ₂ O) _{2< Zeitschrift Fur Kristallographie - Crystalline Materials, 1995, 210, 882-882.}	/ വ 8>.	2
405	\hat{l} ¼-Nitrido-Bis(Triphenylphosphorus) (1+) \hat{l} ¼-Carbonyl-Decacarbonyl- \hat{l} ¼-Hydridotriosmate(1-). Inorganic Syntheses, 2007, , 236-237.	0.3	2
406	Metalâ€Templated, Tight Loop Conformation of a Cysâ€Xâ€Cys Biomimetic Assembles a Dimanganese Complex. Angewandte Chemie - International Edition, 2020, 59, 3645-3649.	13.8	2
407	Kinetic and Computational Analysis of CO Substitution in a Dinuclear Osmium Carbonyl Complex: Intersection between Dissociative and Dissociative-Interchange Mechanisms. Inorganic Chemistry, 2022, 61, 246-253.	4.0	2
408	Chromium, molybdenum and tungsten annual survey covering the year 1971. Journal of Organometallic Chemistry, 1972, 45, 257-334.	1.8	1
409	Metal Carbonyl Spectra. Journal of Organometallic Chemistry, 1975, 99, C39.	1.8	1
410	A mass spectral study of intramolecular rearrangements in cis-M(CO)4(13CO)piperidine (M = Cr, W) derivatives. Journal of Organometallic Chemistry, 1978, 161, C11-C12.	1.8	1
411	Structure of tetrakis(dimethylphenylphosphine)rhodium(I) chloride. Acta Crystallographica Section C: Crystal Structure Communications, 1993, 49, 141-142.	0.4	1
412	Crystal structure of tetraethylammonium O-methyldithiocarbonate, C ₁₀ H ₂₃ NOS ₂ . Zeitschrift Fur Kristallographie - Crystalline Materials, 1994, 209, 377-378.	0.8	1
413	Crystal structure of cyanoacetato-tetrahydrofuran-tris(3-phenylpyrazol-1-yl) hydroborato-cadmium, C34H32BCdN7O3. Zeitschrift Fur Kristallographie - Crystalline Materials, 1995, 210, 146-147.	0.8	1
414	Crystal structure of aqua-bis(2,9-dimethyl-1,10-phenanthroline)-p-toluenesulfonatoruthenium(II)p-toulenesulfonate–methanol–hy [Ru(C14H12N2)2(CH3C6H4SO3)(OH2)]CH3C6H4SO3 · 2CH3OH · 2H2O. Zeitschrift Fur Kristallographie - Crystalline Materials, 1996, 211, 977-979.	drate(1/2	/2),

#	Article	IF	CITATIONS
415	The synthesis and characterization of iron cyanide building blocks: [K]2[CpFe(CN)3] and its pentamethylcyclopentadienyl (Cp*) analog. Inorganica Chimica Acta, 2005, 358, 4095-4098.	2.4	1
416	Copolymerization of CO2 and Epoxides Catalyzed by Metal Salen Complexes. ChemInform, 2005, 36, no.	0.0	1
417	The Organometallic Chemistry of Carbon Dioxide Pertinent to Catalysis. , 1990, , 43-64.		1
418	Polymerization of Epoxides. , 2022, , 431-455.		1
419	Chromium, molybdenum and tungsten annual servey covering the year 1973. Journal of Organometallic Chemistry, 1974, 82, 309-425.	1.8	О
420	Correction. Steric Contributions to the Solution Dynamics Involving Phosphorus Ligand Dissociation in Substituted Derivatives of Molybdenum Hexacarbonyl. Inorganic Chemistry, 1979, 18, 2336-2336.	4.0	0
421	Crystal structure of bis(bis(triphenylphosphane)- $\langle i \rangle \hat{l} / 4 \langle i \rangle$ -N,Ocyanoacetato)copper(I)tetrahydrofuran, C ₈₆ H ₈₀ CU ₂ N ₂ O ₆ P ₄ . Zeitschrift Fur Kristallographie - Crystalline Materials, 1994, 209, 552-553.	0.8	0
422	cis-Perhydro-1,4-benzodioxin-2,3-dione. Acta Crystallographica Section E: Structure Reports Online, 2004, 60, o868-o869.	0.2	0
423	Catalysts for an Aqueous Catalysis: Section 3.1. , 2005, , 70-99.		0
424	Transition Metals. ChemInform, 2005, 36, no.	0.0	0
425	Bio-mimetic study of novel materials for joint replacements. Materials Research Society Symposia Proceedings, 2005, 898, 1.	0.1	0
426	1 /4-Nitrido-Bis(Triphenylphosphorus)(1 +)- 1 /4-Carbonyl-Decacarbonyl- 1 /4-Hydridotriosmate(1 -). Inorganic Syntheses, 2007, , 193-194.	0.3	0
427	Iron Complexes Containing Electrochemically Active Diazocycle-bis(di- <i>tert</i> butyl-phenol) Ligands. Journal of the Brazilian Chemical Society, 2014, , .	0.6	0
428	Oxygen atom exchange in rhenium bipyridine and phenanthroline tetracarbonyl cations with H218O. Polyhedron, 2018, 156, 58-63.	2.2	0
429	Metalâ€Templated, Tight Loop Conformation of a Cysâ€Xâ€Cys Biomimetic Assembles a Dimanganese Complex. Angewandte Chemie, 2020, 132, 3674-3678.	2.0	0
430	TEMPO Containing Radical Polymonothiocarbonate Polymers with Regio―and Stereoâ€Regularities: Synthesis, Characterization, and Electrical Conductivity Studies. Angewandte Chemie, 2021, 133, 20902-20906.	2.0	O
431	Group 6 Pentacarbonyl Acetates as their \hat{l} /4-Nitrido-Bis(Triphenylphosphorus)(1+) Salts. Inorganic Syntheses, 0, , 295-300.	0.3	0
432	Crystal structure of acetato-1,5,9-triazacyclododecane-zinc tetraphenylborate, [(C9H21N3)(CH3CO2)Zn] [(C6H5)4B]. Zeitschrift Fur Kristallographie - Crystalline Materials, 1995, 210, 148-149.	0.8	0

#	Article	lF	CITATIONS
433	Studies of the Interactions of the Tungsten Pentacarbonyl Fluoride Anion with Carbon Dioxide. Polyhedron, 2022, , 115852.	2.2	0