
## Nicholas J Clemons

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2052159/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                             | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | C5b-9 Membrane Attack Complex Formation andÂExtracellular Vesicle Shedding in Barrett's Esophagus<br>and Esophageal Adenocarcinoma. Frontiers in Immunology, 2022, 13, 842023.                                      | 4.8  | 4         |
| 2  | Elevation of fatty acid desaturaseÂ2 in esophageal adenocarcinoma increases polyunsaturated lipids<br>and may exacerbate bile acidâ€induced DNA damage. Clinical and Translational Medicine, 2022, 12, e810.        | 4.0  | 6         |
| 3  | Epithelial de-differentiation triggered by co-ordinate epigenetic inactivation of the EHF and CDX1 transcription factors drives colorectal cancer progression. Cell Death and Differentiation, 2022, 29, 2288-2302. | 11.2 | 6         |
| 4  | Multiparametric High-Content Cell Painting Identifies Copper Ionophores as Selective Modulators of Esophageal Cancer Phenotypes. ACS Chemical Biology, 2022, 17, 1876-1889.                                         | 3.4  | 11        |
| 5  | Loss of SMAD4 Is Sufficient to Promote Tumorigenesis in a Model of Dysplastic Barrett's Esophagus.<br>Cellular and Molecular Gastroenterology and Hepatology, 2021, 12, 689-713.                                    | 4.5  | 11        |
| 6  | Transketolase regulates sensitivity to APR-246 in p53-null cells independently of oxidative stress modulation. Scientific Reports, 2021, 11, 4480.                                                                  | 3.3  | 5         |
| 7  | The TIM22 complex mediates the import of sideroflexins and is required for efficient mitochondrial one-carbon metabolism. Molecular Biology of the Cell, 2021, 32, 475-491.                                         | 2.1  | 19        |
| 8  | Mutant p53 Mediates Sensitivity to Cancer Treatment Agents in Oesophageal Adenocarcinoma<br>Associated with MicroRNA and SLC7A11 Expression. International Journal of Molecular Sciences, 2021,<br>22, 5547.        | 4.1  | 9         |
| 9  | HOXA13 in etiology and oncogenic potential of Barrett's esophagus. Nature Communications, 2021, 12, 3354.                                                                                                           | 12.8 | 5         |
| 10 | Opportunities for Ferroptosis in Cancer Therapy. Antioxidants, 2021, 10, 986.                                                                                                                                       | 5.1  | 15        |
| 11 | SLC7A11 Is a Superior Determinant of APR-246 (Eprenetapopt) Response than <i>TP53</i> Mutation Status.<br>Molecular Cancer Therapeutics, 2021, 20, 1858-1867.                                                       | 4.1  | 24        |
| 12 | Mutant p53-reactivating compound APR-246 synergizes with asparaginase in inducing growth suppression in acute lymphoblastic leukemia cells. Cell Death and Disease, 2021, 12, 709.                                  | 6.3  | 11        |
| 13 | Trapping Colorectal Cancer Into a Dead-end. Gastroenterology, 2021, 161, 33-35.                                                                                                                                     | 1.3  | 0         |
| 14 | 732 TUMOR INFILTRATING NEUTROPHILS ARE A POOR PROGNOSTIC MARKER FOR ESOPHAGEAL CANCER PATIENTS RECEIVING NEOADJUVANT CHEMORADIOTHERAPY. Ecological Management and Restoration, 2021, 34, .                          | 0.4  | 0         |
| 15 | 814 SMAD4 AS A POTENTIAL GATEKEEPER FOR GENOMIC INSTABILITY AND MTOR-MEDIATED TUMORIGENESIS IN ESOPHAGEAL ADENOCARCINOMA. Ecological Management and Restoration, 2021, 34, .                                        | 0.4  | 0         |
| 16 | A thiolâ€bound drug reservoir enhances APRâ€246â€induced mutant p53 tumor cell death. EMBO Molecular<br>Medicine, 2021, 13, e10852.                                                                                 | 6.9  | 28        |
| 17 | Cyclooxygenases and Prostaglandins in Tumor Immunology and Microenvironment of Gastrointestinal Cancer. Gastroenterology, 2021, 161, 1813-1829.                                                                     | 1.3  | 60        |
| 18 | <scp>GRB7</scp> is an oncogenic driver and potential therapeutic target in oesophageal adenocarcinoma. Journal of Pathology, 2020, 252, 317-329.                                                                    | 4.5  | 8         |

NICHOLAS J CLEMONS

| #  | Article                                                                                                                                                                                | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Function of hTim8a in complex IV assembly in neuronal cells provides insight into pathomechanism<br>underlying Mohr-Tranebjærg syndrome. ELife, 2019, 8, .                             | 6.0  | 34        |
| 20 | Bridging the molecular divide: alcoholâ€induced downregulation of PAX9 and tumour development.<br>Journal of Pathology, 2018, 244, 386-388.                                            | 4.5  | 6         |
| 21 | Preclinical models for the study of Barrett's carcinogenesis. Annals of the New York Academy of Sciences, 2018, 1434, 139-148.                                                         | 3.8  | 3         |
| 22 | TGF-beta signaling and its targeted therapy in gastrointestinal cancers. Discovery Medicine, 2018, 26, 103-112.                                                                        | 0.5  | 8         |
| 23 | The prognostic value of TP53 mutations in oesophageal adenocarcinoma: a systematic review and meta-analysis. Gut, 2017, 66, 399-410.                                                   | 12.1 | 31        |
| 24 | Inhibiting the system xCâ^'/glutathione axis selectively targets cancers with mutant-p53 accumulation.<br>Nature Communications, 2017, 8, 14844.                                       | 12.8 | 229       |
| 25 | Inhibiting system x <sub>C</sub> <sup>â^</sup> and glutathione biosynthesis – a potential Achilles'<br>heel in mutant-p53 cancers. Molecular and Cellular Oncology, 2017, 4, e1344757. | 0.7  | 12        |
| 26 | The Genetics of Barrett's Esophagus: A Familial and Population-Based Perspective. Digestive Diseases and Sciences, 2016, 61, 1826-1834.                                                | 2.3  | 7         |
| 27 | Intramuscular Transplantation Improves Engraftment Rates for Esophageal Patient-Derived Tumor Xenografts. Annals of Surgical Oncology, 2016, 23, 305-311.                              | 1.5  | 23        |
| 28 | Novel metastatic models of esophageal adenocarcinoma derived from FLO-1 cells highlight the importance of E-cadherin in cancer metastasis. Oncotarget, 2016, 7, 83342-83358.           | 1.8  | 14        |
| 29 | Cancerâ€associated fibroblasts predict poor outcome and promote periostinâ€dependent invasion in oesophageal adenocarcinoma. Journal of Pathology, 2015, 235, 466-477.                 | 4.5  | 154       |
| 30 | APR-246 potently inhibits tumour growth and overcomes chemoresistance in preclinical models of oesophageal adenocarcinoma. Gut, 2015, 64, 1506-1516.                                   | 12.1 | 84        |
| 31 | Characterization of a Novel Tumorigenic Esophageal Adenocarcinoma Cell Line: OANC1. Digestive Diseases and Sciences, 2014, 59, 78-88.                                                  | 2.3  | 10        |
| 32 | Hedgehog signaling regulates FOXA2 in esophageal embryogenesis and Barrett's metaplasia. Journal of<br>Clinical Investigation, 2014, 124, 3767-3780.                                   | 8.2  | 81        |
| 33 | Advances in understanding the pathogenesis of Barrett's esophagus. Discovery Medicine, 2014, 17, 7-14.                                                                                 | 0.5  | 12        |
| 34 | Molecular changes in the phosphatidylinositide 3â€kinase (PI3K) pathway are common in gastric cancer.<br>Journal of Surgical Oncology, 2013, 108, 113-120.                             | 1.7  | 11        |
| 35 | Barrett's esophagus: cancer and molecular biology. Annals of the New York Academy of Sciences, 2013, 1300, 296-314.                                                                    | 3.8  | 24        |
| 36 | Signaling pathways in the molecular pathogenesis of adenocarcinomas of the esophagus and gastroesophageal junction. Cancer Biology and Therapy, 2013, 14, 782-795.                     | 3.4  | 40        |

NICHOLAS J CLEMONS

0

| #  | Article                                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Sox9 drives columnar differentiation of esophageal squamous epithelium: a possible role in the<br>pathogenesis of Barrett's esophagus. American Journal of Physiology - Renal Physiology, 2012, 303,<br>G1335-G1346.                                  | 3.4 | 50        |
| 38 | Mutations in the selenocysteine insertion sequence–binding protein 2 gene lead to a multisystem selenoprotein deficiency disorder in humans. Journal of Clinical Investigation, 2010, 120, 4220-4235.                                                 | 8.2 | 268       |
| 39 | Nitric oxide-mediated invasion in Barrett's high-grade dysplasia and adenocarcinoma. Carcinogenesis, 2010, 31, 1669-1675.                                                                                                                             | 2.8 | 23        |
| 40 | Stromal genes discriminate preinvasive from invasive disease, predict outcome, and highlight<br>inflammatory pathways in digestive cancers. Proceedings of the National Academy of Sciences of the<br>United States of America, 2010, 107, 2177-2182. | 7.1 | 143       |
| 41 | Aberrant Epithelial–Mesenchymal Hedgehog Signaling Characterizes Barrett's Metaplasia.<br>Gastroenterology, 2010, 138, 1810-1822.e2.                                                                                                                  | 1.3 | 156       |
| 42 | Nitric Oxide and Acid Induce Double-Strand DNA Breaks in Barrett's Esophagus Carcinogenesis via<br>Distinct Mechanisms. Gastroenterology, 2007, 133, 1198-1209.                                                                                       | 1.3 | 94        |
| 43 | TRAIL-induced apoptosis is enhanced by heat shock protein 70 expression. Cell Stress and Chaperones, 2006, 11, 343.                                                                                                                                   | 2.9 | 14        |
| 44 | Hsp72 Inhibits Fas-mediated Apoptosis Upstream of the Mitochondria in Type II Cells. Journal of<br>Biological Chemistry, 2005, 280, 9005-9012.                                                                                                        | 3.4 | 44        |
| 45 | Hsp72 Inhibits Apoptosis Upstream of the Mitochondria and Not through Interactions with Apaf-1.<br>Journal of Biological Chemistry, 2004, 279, 51490-51499.                                                                                           | 3.4 | 118       |
|    |                                                                                                                                                                                                                                                       |     |           |

Pathogenesis of Barrett's Esophagus. , 0, , 27-37.