
Guofa Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2051946/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Association between climate variability and malaria epidemics in the East African highlands. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 2375-2380.	7.1	390
2	Urbanization Increases Aedes albopictus Larval Habitats and Accelerates Mosquito Development and Survivorship. PLoS Neglected Tropical Diseases, 2014, 8, e3301.	3.0	293
3	Malaria in the Greater Mekong Subregion: Heterogeneity and complexity. Acta Tropica, 2012, 121, 227-239.	2.0	219
4	Insecticide-treated net (ITN) ownership, usage, and malaria transmission in the highlands of western Kenya. Parasites and Vectors, 2011, 4, 113.	2.5	157
5	Changing Patterns of Malaria Epidemiology between 2002 and 2010 in Western Kenya: The Fall and Rise of Malaria. PLoS ONE, 2011, 6, e20318.	2.5	144
6	ASSOCIATION BETWEEN LAND COVER AND HABITAT PRODUCTIVITY OF MALARIA VECTORS IN WESTERN KENYAN HIGHLANDS. American Journal of Tropical Medicine and Hygiene, 2006, 74, 69-75.	1.4	144
7	SPATIAL DISTRIBUTION OF ANOPHELINE LARVAL HABITATS IN WESTERN KENYAN HIGHLANDS: EFFECTS OF LAND COVER TYPES AND TOPOGRAPHY. American Journal of Tropical Medicine and Hygiene, 2005, 73, 157-165.	1.4	131
8	Landscape determinants and remote sensing of anopheline mosquito larval habitats in the western Kenya highlands. Malaria Journal, 2006, 5, 13.	2.3	119
9	Spatial Relationship between Adult Malaria Vector Abundance and Environmental Factors in Western Kenya Highlands. American Journal of Tropical Medicine and Hygiene, 2007, 77, 29-35.	1.4	110
10	Indoor and outdoor malaria vector surveillance in western Kenya: implications for better understanding of residual transmission. Malaria Journal, 2017, 16, 443.	2.3	92
11	Spatial distribution of anopheline larval habitats in Western Kenyan highlands: effects of land cover types and topography. American Journal of Tropical Medicine and Hygiene, 2005, 73, 157-65.	1.4	89
12	Association between land cover and habitat productivity of malaria vectors in western Kenyan highlands. American Journal of Tropical Medicine and Hygiene, 2006, 74, 69-75.	1.4	85
13	SPATIO-TEMPORAL DISTRIBUTION OF PLASMODIUM FALCIPARUM AND P. VIVAX MALARIA IN THAILAND. American Journal of Tropical Medicine and Hygiene, 2005, 72, 256-262.	1.4	82
14	Bacterial microbiota assemblage in <i>Aedes albopictus</i> mosquitoes and its impacts on larval development. Molecular Ecology, 2018, 27, 2972-2985.	3.9	78
15	Surveillance of malaria vector population density and biting behaviour in western Kenya. Malaria Journal, 2015, 14, 244.	2.3	74
16	Anopheline Larval Habitats Seasonality and Species Distribution: A Prerequisite for Effective Targeted Larval Habitats Control Programmes. PLoS ONE, 2012, 7, e52084.	2.5	73
17	Multi-country Survey Revealed Prevalent and Novel F1534S Mutation in Voltage-Gated Sodium Channel (VGSC) Gene in Aedes albopictus. PLoS Neglected Tropical Diseases, 2016, 10, e0004696.	3.0	72
18	MALARIA VECTOR PRODUCTIVITY IN RELATION TO THE HIGHLAND ENVIRONMENT IN KENYA. American Journal of Tropical Medicine and Hygiene, 2006, 75, 448-453.	1.4	66

#	Article	IF	CITATIONS
19	Spatial relationship between adult malaria vector abundance and environmental factors in western Kenya highlands. American Journal of Tropical Medicine and Hygiene, 2007, 77, 29-35.	1.4	66
20	<i>Plasmodium falciparum</i> Spatial Analysis, Western Kenya Highlands. Emerging Infectious Diseases, 2005, 11, 1571-1577.	4.3	65
21	Multiple Resistances and Complex Mechanisms of Anopheles sinensis Mosquito: A Major Obstacle to Mosquito-Borne Diseases Control and Elimination in China. PLoS Neglected Tropical Diseases, 2014, 8, e2889.	3.0	64
22	Comparative evaluation of the efficiency of the BG-Sentinel trap, CDC light trap and Mosquito-oviposition trap for the surveillance of vector mosquitoes. Parasites and Vectors, 2016, 9, 446.	2.5	64
23	Evidence for multiple-insecticide resistance in urban Aedes albopictus populations in southern China. Parasites and Vectors, 2018, 11, 4.	2.5	62
24	Land Use and Land Cover Changes and Spatiotemporal Dynamics of Anopheline Larval Habitats during a Four-Year Period in a Highland Community of Africa. American Journal of Tropical Medicine and Hygiene, 2009, 81, 1079-1084.	1.4	61
25	Relationship between Knockdown Resistance, Metabolic Detoxification and Organismal Resistance to Pyrethroids in Anopheles sinensis. PLoS ONE, 2013, 8, e55475.	2.5	61
26	Low Parasitemia in Submicroscopic Infections Significantly Impacts Malaria Diagnostic Sensitivity in the Highlands of Western Kenya. PLoS ONE, 2015, 10, e0121763.	2.5	60
27	Community-wide benefits of targeted indoor residual spray for malaria control in the Western Kenya Highland. Malaria Journal, 2010, 9, 67.	2.3	59
28	Transmission dynamics of co-endemic Plasmodium vivax and P. falciparum in Ethiopia and prevalence of antimalarial resistant genotypes. PLoS Neglected Tropical Diseases, 2017, 11, e0005806.	3.0	57
29	Oviposition Site Preference and Egg Hatchability of <i>Anopheles gambiae</i> : Effects of Land Cover Types. Journal of Medical Entomology, 2005, 42, 993-997.	1.8	56
30	Pyrethroid and DDT Resistance and Organophosphate Susceptibility among <i>Anopheles</i> spp. Mosquitoes, Western Kenya. Emerging Infectious Diseases, 2015, 21, 2178-2181.	4.3	56
31	Topography as a modifier of breeding habitats and concurrent vulnerability to malaria risk in the western Kenya highlands. Parasites and Vectors, 2011, 4, 241.	2.5	52
32	Spatial Distribution Patterns of Malaria Vectors and Sample Size Determination in Spatially Heterogeneous Environments: A Case Study in the West Kenyan Highland. Journal of Medical Entomology, 2004, 41, 1001-1009.	1.8	50
33	Spatio-temporal distribution of Plasmodium falciparum and p. Vivax malaria in Thailand. American Journal of Tropical Medicine and Hygiene, 2005, 72, 256-62.	1.4	50
34	Evaluation of long-lasting microbial larvicide for malaria vector control in Kenya. Malaria Journal, 2016, 15, 577.	2.3	49
35	Malaria vector productivity in relation to the highland environment in Kenya. American Journal of Tropical Medicine and Hygiene, 2006, 75, 448-53.	1.4	49
36	Therapeutic Responses of Plasmodium vivax Malaria to Chloroquine and Primaquine Treatment in Northeastern Myanmar. Antimicrobial Agents and Chemotherapy, 2015, 59, 1230-1235.	3.2	48

#	Article	IF	CITATIONS
37	Microgeography and molecular epidemiology of malaria at the Thailand-Myanmar border in the malaria pre-elimination phase. Malaria Journal, 2015, 14, 198.	2.3	47
38	Evaluation of universal coverage of insecticide-treated nets in western Kenya: field surveys. Malaria Journal, 2014, 13, 351.	2.3	44
39	Active case surveillance, passive case surveillance and asymptomatic malaria parasite screening illustrate different age distribution, spatial clustering and seasonality in western Kenya. Malaria Journal, 2015, 14, 41.	2.3	43
40	Survivorship of Immature Stages of <i>Anopheles gambiae</i> s.l. (Diptera: Culicidae) in Natural Habitats in Western Kenya Highlands. Journal of Medical Entomology, 2007, 44, 758-764.	1.8	42
41	Variation in exposure to Anopheles gambiae salivary gland peptide (gSG6-P1) across different malaria transmission settings in the western Kenya highlands. Malaria Journal, 2012, 11, 318.	2.3	40
42	Landscape genetic structure and evolutionary genetics of insecticide resistance gene mutations in Anopheles sinensis. Parasites and Vectors, 2016, 9, 228.	2.5	40
43	Molecular evidence for new sympatric cryptic species of Aedes albopictus (Diptera: Culicidae) in China: A new threat from Aedes albopictus subgroup?. Parasites and Vectors, 2018, 11, 228.	2.5	39
44	Fast emerging insecticide resistance in Aedes albopictus in Guangzhou, China: Alarm to the dengue epidemic. PLoS Neglected Tropical Diseases, 2019, 13, e0007665.	3.0	39
45	Impacts of Antimalarial Drugs on Plasmodium falciparum Drug Resistance Markers, Western Kenya, 2003–2015. American Journal of Tropical Medicine and Hygiene, 2018, 98, 692-699.	1.4	39
46	Habitat stability and occurrences of malaria vector larvae in western Kenya highlands. Malaria Journal, 2009, 8, 234.	2.3	38
47	Utility of Health Facility-based Malaria Data for Malaria Surveillance. PLoS ONE, 2013, 8, e54305.	2.5	37
48	The current malaria morbidity and mortality in different transmission settings in Western Kenya. PLoS ONE, 2018, 13, e0202031.	2.5	37
49	Development of Resistance to Pyrethroid in Culex pipiens pallens Population under Different Insecticide Selection Pressures. PLoS Neglected Tropical Diseases, 2015, 9, e0003928.	3.0	37
50	Risk factors associated with slide positivity among febrile patients in a conflict zone of north-eastern Myanmar along the China-Myanmar border. Malaria Journal, 2013, 12, 361.	2.3	35
51	Insecticidal decay effects of long-lasting insecticide nets and indoor residual spraying on Anopheles gambiae and Anopheles arabiensis in Western Kenya. Parasites and Vectors, 2015, 8, 588.	2.5	35
52	RNA-seq analyses of changes in the Anopheles gambiae transcriptome associated with resistance to pyrethroids in Kenya: identification of candidate-resistance genes and candidate-resistance SNPs. Parasites and Vectors, 2015, 8, 474.	2.5	35
53	Species richness and parasitism in an assemblage of parasitoids attacking maize stem borers in coastal Kenya. Ecological Entomology, 2003, 28, 109-118.	2.2	34
54	Performance of two rapid diagnostic tests for malaria diagnosis at the China-Myanmar border area. Malaria Journal, 2013, 12, 73.	2.3	34

#	Article	IF	CITATIONS
55	Impact of interventions on malaria in internally displaced persons along the China–Myanmar border: 2011–2014. Malaria Journal, 2016, 15, 471.	2.3	34
56	Seasonality modeling of the distribution of Aedes albopictus in China based on climatic and environmental suitability. Infectious Diseases of Poverty, 2019, 8, 98.	3.7	34
57	Monooxygenase Levels and Knockdown Resistance (<i>kdr</i>) Allele Frequencies in <i>Anopheles gambiae</i> and <i>Anopheles arabiensis</i> in Kenya. Journal of Medical Entomology, 2008, 45, 242-250.	1.8	33
58	Survivorship of Immature Stages of <i>Anopheles gambiae</i> s.l. (Diptera: Culicidae) in Natural Habitats in Western Kenya Highlands. Journal of Medical Entomology, 2007, 44, 758-764.	1.8	32
59	Frequent Spread of Plasmodium vivax Malaria Maintains High Genetic Diversity at the Myanmar-China Border, Without Distance and Landscape Barriers. Journal of Infectious Diseases, 2017, 216, 1254-1263.	4.0	32
60	Phenotypic, genotypic and biochemical changes during pyrethroid resistance selection in Anopheles gambiae mosquitoes. Scientific Reports, 2020, 10, 19063.	3.3	31
61	The temporal correlation and spatial synchrony in the stemborer and parasitoid system of Coast Kenya with climate effects. Annales De La Societe Entomologique De France, 2006, 42, 381-387.	0.9	30
62	Genetic diversity of Leishmania donovani that causes cutaneous leishmaniasis in Sri Lanka: a cross sectional study with regional comparisons. BMC Infectious Diseases, 2017, 17, 791.	2.9	30
63	Multiplicity and molecular epidemiology of Plasmodium vivax and Plasmodium falciparum infections in East Africa. Malaria Journal, 2018, 17, 185.	2.3	30
64	Resting behaviour of malaria vectors in highland and lowland sites of western Kenya: Implication on malaria vector control measures. PLoS ONE, 2020, 15, e0224718.	2.5	30
65	Clinical Malaria along the China–Myanmar Border, Yunnan Province, China, January 2011–August 2012. Emerging Infectious Diseases, 2014, 20, 681-684.	4.3	29
66	Clinical Efficacy of Dihydroartemisinin–Piperaquine for the Treatment of Uncomplicated Plasmodium falciparum Malaria at the China–Myanmar Border. American Journal of Tropical Medicine and Hygiene, 2015, 93, 577-583.	1.4	29
67	Seasonal dynamics and microgeographical spatial heterogeneity of malaria along the China–Myanmar border. Acta Tropica, 2016, 157, 12-19.	2.0	29
68	Influence of blood meal and age of mosquitoes on susceptibility to pyrethroids in Anopheles gambiae from Western Kenya. Malaria Journal, 2019, 18, 112.	2.3	29
69	Epidemiological risk factors for clinical malaria infection in the highlands of Western Kenya. Malaria Journal, 2019, 18, 211.	2.3	28
70	Marked variation in MSP-119 antibody responses to malaria in western Kenyan highlands. BMC Infectious Diseases, 2012, 12, 50.	2.9	27
71	Population dynamics and community structure of Anopheles mosquitoes along the China-Myanmar border. Parasites and Vectors, 2015, 8, 445.	2.5	27
72	Insecticide-Treated Net Campaign and Malaria Transmission in Western Kenya: 2003–2015. Frontiers in Public Health, 2016, 4, 153.	2.7	27

#	Article	IF	CITATIONS
73	Ten years malaria trend at Arjo-Didessa sugar development site and its vicinity, Southwest Ethiopia: a retrospective study. Malaria Journal, 2019, 18, 145.	2.3	25
74	Clinical malaria case definition and malaria attributable fraction in the highlands of western Kenya. Malaria Journal, 2014, 13, 405.	2.3	24
75	Efficacy and persistence of long-lasting microbial larvicides against malaria vectors in western Kenya highlands. Parasites and Vectors, 2018, 11, 438.	2.5	24
76	Extensive new Anopheles cryptic species involved in human malaria transmission in western Kenya. Scientific Reports, 2020, 10, 16139.	3.3	24
77	Effects of Microclimate Condition Changes Due to Land Use and Land Cover Changes on the Survivorship of Malaria Vectors in China-Myanmar Border Region. PLoS ONE, 2016, 11, e0155301.	2.5	23
78	Analysis of asymptomatic and clinical malaria in urban and suburban settings of southwestern Ethiopia in the context of sustaining malaria control and approaching elimination. Malaria Journal, 2016, 15, 250.	2.3	22
79	Enhancing attraction of the vector mosquito Aedes albopictus by using a novel synthetic odorant blend. Parasites and Vectors, 2019, 12, 382.	2.5	21
80	Modest additive effects of integrated vector control measures on malaria prevalence and transmission in western Kenya. Malaria Journal, 2013, 12, 256.	2.3	20
81	Molecular inference of sources and spreading patterns of Plasmodium falciparum malaria parasites in internally displaced persons settlements in Myanmar–China border area. Infection, Genetics and Evolution, 2015, 33, 189-196.	2.3	20
82	Comparative transcriptome analysis and RNA interference reveal CYP6A8 and SNPs related to pyrethroid resistance in Aedes albopictus. PLoS Neglected Tropical Diseases, 2018, 12, e0006828.	3.0	20
83	Evaluation of human-baited double net trap and human-odour-baited CDC light trap for outdoor host-seeking malaria vector surveillance in Kenya and Ethiopia. Malaria Journal, 2020, 19, 174.	2.3	19
84	Insecticide resistance status of Anopheles arabiensis in irrigated and non-irrigated areas in western Kenya. Parasites and Vectors, 2021, 14, 335.	2.5	19
85	Alterations in Plasmodium falciparum Genetic Structure Two Years after Increased Malaria Control Efforts in Western Kenya. American Journal of Tropical Medicine and Hygiene, 2013, 88, 29-36.	1.4	18
86	Life-table studies revealed significant effects of deforestation on the development and survivorship of Anopheles minimus larvae. Parasites and Vectors, 2016, 9, 323.	2.5	18
87	Reactive case detection of Plasmodium falciparum in western Kenya highlands: effective in identifying additional cases, yet limited effect on transmission. Malaria Journal, 2018, 17, 111.	2.3	18
88	Larval ecology and bionomics of Anopheles funestus in highland and lowland sites in western Kenya. PLoS ONE, 2021, 16, e0255321.	2.5	18
89	Evaluation of the performance of new sticky pots for outdoor resting malaria vector surveillance in western Kenya. Parasites and Vectors, 2019, 12, 278.	2.5	17
90	Patterns of spatial genetic structures in Aedes albopictus (Diptera: Culicidae) populations in China. Parasites and Vectors, 2019, 12, 552.	2.5	17

Guofa Zhou

#	Article	IF	CITATIONS
91	Widespread multiple insecticide resistance in the major dengue vector <scp><i>Aedes albopictus</i></scp> in Hainan Province, China. Pest Management Science, 2021, 77, 1945-1953.	3.4	17
92	Spatial heterogeneity and temporal dynamics of mosquito population density and community structure in Hainan Island, China. Parasites and Vectors, 2020, 13, 444.	2.5	16
93	The effect of irrigation on malaria vector bionomics and transmission intensity in western Ethiopia. Parasites and Vectors, 2021, 14, 516.	2.5	16
94	Why some sites are responding better to anti-malarial interventions? A case study from western Kenya. Malaria Journal, 2017, 16, 498.	2.3	15
95	Semi-field life-table studies of Aedes albopictus (Diptera: Culicidae) in Guangzhou, China. PLoS ONE, 2020, 15, e0229829.	2.5	15
96	The impact of long-lasting microbial larvicides in reducing malaria transmission and clinical malaria incidence: study protocol for a cluster randomized controlled trial. Trials, 2016, 17, 423.	1.6	14
97	Examining Plasmodium falciparum and P. vivax clearance subsequent to antimalarial drug treatment in the Myanmar-China border area based on quantitative real-time polymerase chain reaction. BMC Infectious Diseases, 2016, 16, 154.	2.9	14
98	Burden of malaria, impact of interventions and climate variability in Western Ethiopia: an area with large irrigation based farming. BMC Public Health, 2022, 22, 196.	2.9	14
99	Serological evidence of vector and parasite exposure in Southern Ghana: the dynamics of malaria transmission intensity. Parasites and Vectors, 2015, 8, 251.	2.5	13
100	Microgeographic Heterogeneity of Border Malaria During Elimination Phase, Yunnan Province, China, 2011–2013. Emerging Infectious Diseases, 2016, 22, 1363-1370.	4.3	13
101	Utility of passive malaria surveillance in hospitals as a surrogate to community infection transmission dynamics in western Kenya. Archives of Public Health, 2018, 76, 39.	2.4	12
102	Vector Competence for DENV-2 Among Aedes albopictus (Diptera: Culicidae) Populations in China. Frontiers in Cellular and Infection Microbiology, 2021, 11, 649975.	3.9	10
103	Community structure and insecticide resistance of malaria vectors in northern-central Myanmar. Parasites and Vectors, 2022, 15, 155.	2.5	9
104	Long-lasting microbial larvicides for controlling insecticide resistant and outdoor transmitting vectors: a cost-effective supplement for malaria interventions. Infectious Diseases of Poverty, 2020, 9, 162.	3.7	8
105	Adaptive interventions for optimizing malaria control: an implementation study protocol for a block-cluster randomized, sequential multiple assignment trial. Trials, 2020, 21, 665.	1.6	8
106	Analysing the generality of spatially predictive mosquito habitat models. Acta Tropica, 2011, 119, 30-37.	2.0	7
107	Insecticide susceptibility status and knockdown resistance (kdr) mutation in Aedes albopictus in China. Parasites and Vectors, 2021, 14, 609.	2.5	7
108	Interspecific mating bias may drive <i>Aedes albopictus</i> displacement of <i>Aedes aegypti</i> during its range expansion. , 2022, 1, .		7

#	Article	IF	CITATIONS
109	Risk associations of submicroscopic malaria infection in lakeshore, plateau and highland areas of Kisumu County in western Kenya. PLoS ONE, 2022, 17, e0268463.	2.5	7
110	Multi-Indicator and Multistep Assessment of Malaria Transmission Risks in Western Kenya. American Journal of Tropical Medicine and Hygiene, 2021, 104, 1359-1370.	1.4	6
111	Predicting distribution of malaria vector larval habitats in Ethiopia by integrating distributed hydrologic modeling with remotely sensed data. Scientific Reports, 2021, 11, 10150.	3.3	6
112	Gaps between Knowledge and Malaria Treatment Practices after Intensive Anti-Malaria Campaigns in Western Kenya: 2004–2016. American Journal of Tropical Medicine and Hygiene, 2020, 102, 1358-1365.	1.4	6
113	Rethinking the economic costs of hospitalization for malaria: accounting for the comorbidities of malaria patients in western Kenya. Malaria Journal, 2021, 20, 429.	2.3	6
114	Genetic diversity and population structure of the human malaria parasite Plasmodium falciparum surface protein Pfs47 in isolates from the lowlands in Western Kenya. PLoS ONE, 2021, 16, e0260434.	2.5	6
115	Age-specific Plasmodium parasite profile in pre and post ITN intervention period at a highland site in western Kenya. Malaria Journal, 2017, 16, 466.	2.3	5
116	Impact of underground storm drain systems on larval ecology of Culex and Aedes species in urban environments of Southern California. Scientific Reports, 2021, 11, 12667.	3.3	5
117	Genomic Variant Analyses in Pyrethroid Resistant and Susceptible Malaria Vector, <i>Anopheles sinensis</i> . G3: Genes, Genomes, Genetics, 2020, 10, 2185-2193.	1.8	4
118	Microgeographic Epidemiology of Malaria Parasites in an Irrigated Area of Western Kenya by Deep Amplicon Sequencing. Journal of Infectious Diseases, 2021, 223, 1456-1465.	4.0	4
119	Behavioral response of insecticide-resistant mosquitoes against spatial repellent: A modified self-propelled particle model simulation. PLoS ONE, 2020, 15, e0244447.	2.5	4
120	Aedes albopictus life table: environment, food, and age dependence survivorship and reproduction in a tropical area. Parasites and Vectors, 2021, 14, 568.	2.5	3
121	Emerging Mosquito Resistance to Piperonyl Butoxide-Synergized Pyrethroid Insecticide and Its Mechanism. Journal of Medical Entomology, 2022, 59, 638-647.	1.8	3
122	A neural network prediction of environmental determinants of <i>Anopheles sinensis</i> knockdown resistance mutation to pyrethroids in China. Journal of Vector Ecology, 2016, 41, 295-302.	1.0	2
123	Atypical Presentation of Post-Kala-Azar Dermal Leishmaniasis in Bhutan. Case Reports in Dermatological Medicine, 2020, 2020, 1-4.	0.3	2
124	An Adaptive Intervention Trial Design for Finding the Optimal Integrated Strategies for Malaria Control and Elimination in Africa: A Model Simulation Study. American Journal of Tropical Medicine and Hygiene, 2021, , .	1.4	2
125	Effects of Guangzhou seasonal climate change on the development of Aedes albopictus and its susceptibility to DENV-2. PLoS ONE, 2022, 17, e0266128.	2.5	2
126	Spatial heterogeneity of knockdown resistance mutations in the dengue vector Aedes albopictus in Guangzhou, China. Parasites and Vectors, 2022, 15, 156.	2.5	2

#	Article	IF	CITATIONS
127	A Spatial-temporal Graph based Hybrid Infectious Disease Model with Application to COVID-19. , 2021, , .		1
128	2 Ecology of African Highland Malaria "project review"(Ecology of African Malaria,Symposium) Tj ETQq0 0 0 rgBT Medical Entomology and Zoology, 2006, 57, 29.	/Overlock 0.1	10 Tf 50 707 0
129	An Integrated Recurrent Neural Network and Regression Model with Spatial and Climatic Couplings for Vector-borne Disease Dynamics. , 2022, , .		0
130	Title is missing!. , 2020, 15, e0224718.		0
131	Title is missing!. , 2020, 15, e0224718.		0
132	Title is missing!. , 2020, 15, e0224718.		0
133	Title is missing!. , 2020, 15, e0224718.		0
134	Semi-field life-table studies of Aedes albopictus (Diptera: Culicidae) in Guangzhou, China. , 2020, 15, e0229829.		0
135	Semi-field life-table studies of Aedes albopictus (Diptera: Culicidae) in Guangzhou, China. , 2020, 15, e0229829.		0
136	Semi-field life-table studies of Aedes albopictus (Diptera: Culicidae) in Guangzhou, China. , 2020, 15, e0229829.		0
137	Semi-field life-table studies of Aedes albopictus (Diptera: Culicidae) in Guangzhou, China. , 2020, 15, e0229829.		0
138	Semi-field life-table studies of Aedes albopictus (Diptera: Culicidae) in Guangzhou, China. , 2020, 15, e0229829.		0
139	Semi-field life-table studies of Aedes albopictus (Diptera: Culicidae) in Guangzhou, China. , 2020, 15, e0229829.		0