Pavel Belan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/205146/publications.pdf

Version: 2024-02-01

		430874	434195
54	1,034	18	31
papers	citations	h-index	g-index
54	54	54	921
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Segmental and descending control of primary afferent input to the spinal lamina X. Pain, 2022, 163, 2014-2020.	4.2	4
2	Precision spinal gene delivery-induced functional switch in nociceptive neurons reverses neuropathic pain. Molecular Therapy, 2022, 30, 2722-2745.	8.2	5
3	Peripheral Inflammation Results in Increased Excitability of Capsaicin-Insensitive Nociceptive DRG Neurons Mediated by Upregulation of ASICs and Voltage-Gated Ion Channels. Frontiers in Cellular Neuroscience, 2021, 15, 723295.	3.7	7
4	Hippocalcin Distribution between the Cytosol and Plasma Membrane of Living Cells. Neurophysiology, 2020, 52, 2-13.	0.3	1
5	Perturbed Ca2+-dependent signaling of DYT2 hippocalcin mutant as mechanism of autosomal recessive dystonia. Neurobiology of Disease, 2019, 132, 104529.	4.4	5
6	Role of T-Type Ca2+ Channels in Painful Diabetic Neuropathy. Neurophysiology, 2019, 51, 455-461.	0.3	1
7	High-threshold primary afferent supply of spinal lamina X neurons. Pain, 2019, 160, 1982-1988.	4.2	10
8	Distinct mechanisms of signal processing by lamina I spino-parabrachial neurons. Scientific Reports, 2019, 9, 19231.	3.3	10
9	Measurement of intracellular concentration of fluorescently-labeled targets in living cells. PLoS ONE, 2018, 13, e0194031.	2.5	13
10	Functional Characterization of Lamina X Neurons in ex-Vivo Spinal Cord Preparation. Frontiers in Cellular Neuroscience, 2017, 11, 342.	3.7	13
11	HIF- $1\hat{1}$ ±-mediated upregulation of SERCA2b: The endogenous mechanism for alleviating the ischemia-induced intracellular Ca2+ store dysfunction in CA1 and CA3 hippocampal neurons. Cell Calcium, 2016, 59, 251-261.	2.4	14
12	Upregulation of T-Type Ca ²⁺ Channels in Long-Term Diabetes Determines Increased Excitability of a Specific Type of Capsaicin-Insensitive DRG Neurons. Molecular Pain, 2015, 11, s12990-015-0028.	2.1	31
13	Inflammatory-induced changes in synaptic drive and postsynaptic AMPARs in lamina II dorsal horn neurons are cell-type specific. Pain, 2015, 156, 428-438.	4.2	30
14	Maximum likelihood estimation of biophysical parameters of synaptic receptors from macroscopic currents. Frontiers in Cellular Neuroscience, 2014, 8, 303.	3.7	6
15	Nociceptive Neurons Differentially Express Fast and Slow T-Type Ca ²⁺ Currents in Different Types of Diabetic Neuropathy. Neural Plasticity, 2014, 2014, 1-12.	2.2	7
16	Different pools of postsynaptic GABA _A receptors mediate inhibition evoked by low―and highâ€frequency presynaptic stimulation at hippocampal synapses. Synapse, 2014, 68, 344-354.	1.2	1
17	Activity-Dependent Potentiation of an Asynchronous Component of GABA-ergic Synaptic Currents in Cultured Hippocampal Neurons. Neurophysiology, 2014, 46, 10-15.	0.3	0
18	A Model for the Fast Synchronous Oscillations of Firing Rate in Rat Suprachiasmatic Nucleus Neurons Cultured in a Multielectrode Array Dish. PLoS ONE, 2014, 9, e106152.	2.5	3

#	Article	IF	CITATIONS
19	Local Signalization in Dendrites and Mechanisms of Short-Term Memory. Neurophysiology, 2013, 45, 359-367.	0.3	2
20	PKCα Is Required for Inflammation-Induced Trafficking of Extrasynaptic AMPA Receptors in Tonically Firing Lamina II Dorsal Horn Neurons During the Maintenance of Persistent Inflammatory Pain. Journal of Pain, 2013, 14, 182-192.	1.4	28
21	Specific functioning of Cav3.2 T-type calcium and TRPV1 channels under different types of STZ-diabetic neuropathy. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2013, 1832, 636-649.	3.8	56
22	Development of inflammation-induced hyperalgesia and allodynia is associated with the upregulation of extrasynaptic AMPA receptors in tonically firing lamina II dorsal horn neurons. Frontiers in Physiology, 2012, 3, 391.	2.8	24
23	Endocytic adaptor protein intersectin 1 forms a complex with microtubule stabilizer STOP in neurons. Gene, 2012, 505, 360-364.	2.2	18
24	Inflammation alters trafficking of extrasynaptic AMPA receptors in tonically firing lamina II neurons of the rat spinal dorsal horn. Pain, 2011, 152, 912-923.	4.2	59
25	Efficient Maximum Likelihood Estimation of Kinetic Rate Constants from Macroscopic Currents. PLoS ONE, 2011, 6, e29731.	2.5	7
26	Decoding glutamate receptor activation by the Ca ²⁺ sensor protein hippocalcin in rat hippocampal neurons. European Journal of Neuroscience, 2010, 32, 347-358.	2.6	17
27	Hippocalcin signaling via site-specific translocation in hippocampal neurons. Neuroscience Letters, 2008, 442, 152-157.	2.1	23
28	The Effect of Nimodipine on Calcium Homeostasis and Pain Sensitivity in Diabetic Rats. Cellular and Molecular Neurobiology, 2006, 26, 1539-1555.	3.3	20
29	Applicability of Peak-Scaled Nonstationary Fluctuation Analysis to the Study of Inhibitory Synaptic Transmission in Hippocampal Cultures. Neurophysiology, 2005, 37, 333-343.	0.3	2
30	Differential properties of GABAergic synaptic connections in rat hippocampal cell cultures. Synapse, 2004, 53, 122-130.	1.2	10
31	Post-tetanic depression of GABAergic synaptic transmission in rat hippocampal cell cultures. Neuroscience Letters, 2002, 323, 5-8.	2.1	18
32	Glutamate-receptor-induced modulation of GABAergic synaptic transmission in the hippocampus. Pflugers Archiv European Journal of Physiology, 2002, 444, 26-37.	2.8	24
33	Title is missing!. Neurophysiology, 2002, 34, 239-242.	0.3	1
34	Postsynaptic mechanism may contribute to inhibitory acetylcholine effect on GABAergic synaptic transmission in hippocampal cell cultures. Synapse, 2001, 41, 65-70.	1.2	7
35	Measuring Ca2+ Extrusion from Single Cells. , 2001, , 251-266.		0
36	Distributions of interevent intervals for miniature inhibitory and excitatory postsynaptic currents in cultured hippocampal neurons. Neurophysiology, 2000, 32, 158-160.	0.3	0

#	Article	IF	Citations
37	Rat hippocampal neurons maintain their own GABAergic synaptic transmission in culture. Neuroscience Letters, 1999, 262, 151-154.	2.1	15
38	Glutamate-induced suppression of inhibitory synaptic transmission in cultivated hippocampal neurons. Neurophysiology, 1998, 30, 279-284.	0.3	1
39	Isoproterenol Evokes Extracellular Ca2+ Spikes Due to Secretory Events in Salivary Gland Cells. Journal of Biological Chemistry, 1998, 273, 4106.	3.4	29
40	Isoproterenol evokes extracellular Ca2+ spikes due to secretory events in salivary gland cells. Journal of Biological Chemistry, 1998, 273, 4106-11.	3.4	7
41	Distribution of Ca2+ extrusion sites on the mouse pancreatic acinar cell surface. Cell Calcium, 1997, 22, 5-10.	2.4	32
42	Nonuniformity of calcium efflux from pancreatic acinar cells and its analysis by mathematical model of calcium diffusion and buffering in extracellular solution. Neurophysiology, 1997, 29, 40-44.	0.3	1
43	Inositol Trisphosphate and Cyclic ADP-Ribose–Mediated Release of Ca2+ from Single Isolated Pancreatic Zymogen Granules. Cell, 1996, 84, 473-480.	28.9	233
44	Mathemathical model of Ca2+ diffusion and buffering in extracellular solution after Ca2+ extrusion from a spherical cell. Neurophysiology, 1996, 28, 187-192.	0.3	0
45	A new technique for assessing the microscopic distribution of cellular calcium exit sites. Pflugers Archiv European Journal of Physiology, 1996, 433, 200-208.	2.8	18
46	Localization of Ca2+ Extrusion Sites in Pancreatic Acinar Cells. Journal of Biological Chemistry, 1996, 271, 7615-7619.	3.4	78
47	The effect of acetylcholine and serotonin on calcium transient and calcium currents in identified Helix pomatia L. neurons. Cellular Signalling, 1994, 6, 551-559.	3.6	1
48	Calcium clamp in single nerve cells. Cell Calcium, 1993, 14, 419-425.	2.4	9
49	Calcium clamp in isolated neurones of the snail Helix pomatia Journal of Physiology, 1993, 462, 47-58.	2.9	25
50	Blocking effect of La3+ ions on transmembrane ionic current evoked by intracellular cyclic AMP injection in identified Helix pomatia neurons. Neuroscience Letters, 1991, 124, 137-139.	2.1	6
51	Extrusion of calcium from a single isolated neuron of the snailHelix pomatia. Journal of Membrane Biology, 1991, 123, 43-47.	2.1	22
52	Free calcium transients and oscillations in nerve cells. Experimental Brain Research, 1991, 83, 459-64.	1.5	25
53	Inositol-1,4,5-trisphosphate and non-hydrolysable GTP analogue induced calcium release from intracellular stores of the Helix pomatia neurons. Comparative Biochemistry and Physiology Part C: Comparative Pharmacology, 1990, 96, 45-47.	0.2	4
54	Cytoplasmic free Ca in isolated snail neurons as revealed by fluorescent probe fura-2: Mechanisms of Ca recovery after Ca load and Ca release from intracellular stores. Journal of Membrane Biology, 1989, 110, 11-18.	2.1	51