
Kenjiro Toyota

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2050516/publications.pdf Version: 2024-02-01

KENIIRO TOVOTA

#	Article	IF	CITATIONS
1	Arctic mercury cycling. Nature Reviews Earth & Environment, 2022, 3, 270-286.	29.7	60
2	Parameterization of gaseous dry deposition in atmospheric chemistry models: Sensitivity to aerodynamic resistance formulations under statically stable conditions. Atmospheric Environment, 2016, 147, 409-422.	4.1	9
3	Chemical cycling and deposition of atmospheric mercury in polar regions: review of recent measurements and comparison with models. Atmospheric Chemistry and Physics, 2016, 16, 10735-10763.	4.9	63
4	Mercury Physicochemical and Biogeochemical Transformation in the Atmosphere and at Atmospheric Interfaces: A Review and Future Directions. Chemical Reviews, 2015, 115, 3760-3802.	47.7	323
5	Air–snowpack exchange of bromine, ozone and mercury in the springtime Arctic simulated by the 1-D model PHANTAS – Part 2: Mercury and its speciation. Atmospheric Chemistry and Physics, 2014, 14, 4135-4167.	4.9	31
6	Air–snowpack exchange of bromine, ozone and mercury in the springtime Arctic simulated by the 1-D model PHANTAS – Part 1: In-snow bromine activation and its impact on ozone. Atmospheric Chemistry and Physics, 2014, 14, 4101-4133.	4.9	60
7	Analysis of reactive bromine production and ozone depletion in the Arctic boundary layer using 3-D simulations with GEM-AQ: inference from synoptic-scale patterns. Atmospheric Chemistry and Physics, 2011, 11, 3949-3979.	4.9	75
8	Modeling chemistry in and above snow at Summit, Greenland – Part 1: Model description and results. Atmospheric Chemistry and Physics, 2011, 11, 4899-4914.	4.9	114
9	Implications of iodine chemistry for daytime HO2levels at Rishiri Island. Geophysical Research Letters, 2002, 29, 45-1-45-4.	4.0	42
10	Modeling multi-phase halogen chemistry in the marine boundary layer with size-segregated aerosol module: Implications for quasi-size-dependent approach. Geophysical Research Letters, 2001, 28, 2899-2902.	4.0	19