J Aramburu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2050248/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	NFAT5 Amplifies Antipathogen Responses by Enhancing Chromatin Accessibility, H3K27 Demethylation, and Transcription Factor Recruitment. Journal of Immunology, 2021, 206, 2652-2667.	0.8	10

2 Salt-Sensitive Hypertension of the Renal Tubular Cell–Specific NFAT5 (Nuclear Factor of Activated) Tj ETQq0 0 0 rgBT /Overlock 10 Tf

3	NFAT5 Controls the Integrity of Epidermis. Frontiers in Immunology, 2021, 12, 780727.	4.8	1
4	The transcription factor NFAT5 limits infection-induced type I interferon responses. Journal of Experimental Medicine, 2020, 217, .	8.5	14
5	Regulation of Inflammatory Functions of Macrophages and T Lymphocytes by NFAT5. Frontiers in Immunology, 2019, 10, 535.	4.8	53
6	NFAT5-Regulated Macrophage Polarization Supports the Proinflammatory Function of Macrophages and T Lymphocytes. Journal of Immunology, 2018, 200, 305-315.	0.8	40
7	Analgesia linked to Nav1.7 loss of function requires µ- and δ-opioid receptors. Wellcome Open Research, 2018, 3, 101.	1.8	21
8	Macrophage-specific MHCII expression is regulated by a remote <i>Ciita</i> enhancer controlled by NFAT5. Journal of Experimental Medicine, 2018, 215, 2901-2918.	8.5	47
9	Contextâ€dependent regulation of Th17â€associated genes and IFNγ expression by the transcription factor NFAT5. Immunology and Cell Biology, 2017, 95, 56-67.	2.3	27
10	Immunodeficiency and Autoimmune Enterocolopathy Linked to NFAT5 Haploinsufficiency. Journal of Immunology, 2015, 194, 2551-2560.	0.8	32
11	Transcription factors and target genes of pre-TCR signaling. Cellular and Molecular Life Sciences, 2015, 72, 2305-2321.	5.4	17
11	Transcription factors and target genes of pre-TCR signaling. Cellular and Molecular Life Sciences, 2015, 72, 2305-2321. Nuclear Factor of Activated T Cells (NFAT). , 2014, , 824-833.	5.4	17 0
11 12 13	Transcription factors and target genes of pre-TCR signaling. Cellular and Molecular Life Sciences, 2015, 72, 2305-2321. Nuclear Factor of Activated T Cells (NFAT). , 2014, , 824-833. Transcriptional regulation of the stress response by mTOR. Science Signaling, 2014, 7, re2.	5.4 3.6	17 0 81
11 12 13 14	Transcription factors and target genes of pre-TCR signaling. Cellular and Molecular Life Sciences, 2015, 72, 2305-2321.Nuclear Factor of Activated T Cells (NFAT). , 2014, , 824-833.Transcriptional regulation of the stress response by mTOR. Science Signaling, 2014, 7, re2.NFAT5 induction by the pre-T-cell receptor serves as a selective survival signal in T-lymphocyte development. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 16091-16096.	5.4 3.6 7.1	17 0 81 30
11 12 13 14 15	Transcription factors and target genes of pre-TCR signaling. Cellular and Molecular Life Sciences, 2015, 72, 2305-2321.Nuclear Factor of Activated T Cells (NFAT). , 2014, , 824-833.Transcriptional regulation of the stress response by mTOR. Science Signaling, 2014, 7, re2.NFAT5 induction by the pre-T-cell receptor serves as a selective survival signal in T-lymphocyte development. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 16091-16096.Transcriptional regulation of gene expression during osmotic stress responses by the mammalian target of rapamycin. Nucleic Acids Research, 2012, 40, 4368-4384.	5.4 3.6 7.1 14.5	17 0 81 30 40
11 12 13 14 15 16	Transcription factors and target genes of pre-TCR signaling. Cellular and Molecular Life Sciences, 2015, 72, 2305-2321.Nuclear Factor of Activated T Cells (NFAT). , 2014, , 824-833.Transcriptional regulation of the stress response by mTOR. Science Signaling, 2014, 7, re2.NFAT5 induction by the pre-T-cell receptor serves as a selective survival signal in T-lymphocyte development. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 16091-16096.Transcriptional regulation of gene expression during osmotic stress responses by the mammalian target of rapamycin. Nucleic Acids Research, 2012, 40, 4368-4384.Gene expression induced by Toll-like receptors in macrophages requires the transcription factor NFAT5. Journal of Experimental Medicine, 2012, 209, 379-393.	5.4 3.6 7.1 14.5 8.5	17 0 81 30 40 143
11 12 13 14 15 16 17	Transcription factors and target genes of pre-TCR signaling. Cellular and Molecular Life Sciences, 2015, 72, 2305-2321.Nuclear Factor of Activated T Cells (NFAT)., 2014, , 824-833.Transcriptional regulation of the stress response by mTOR. Science Signaling, 2014, 7, re2.NFAT5 induction by the pre-T-cell receptor serves as a selective survival signal in T-lymphocyte development. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 16091-16096.Transcriptional regulation of gene expression during osmotic stress responses by the mammalian target of rapamycin. Nucleic Acids Research, 2012, 40, 4368-4384.Gene expression induced by Toll-like receptors in macrophages requires the transcription factor NFAT5. Journal of Experimental Medicine, 2012, 209, 379-393.Utilidad de las pelÃculas para debatir temas complejos: polÃtica, religión y ciencia en Ãgora. Educacion Medica, 2012, 15, 95-101.	5.4 3.6 7.1 14.5 8.5 0.3	17 0 81 30 40 143 1

J Aramburu

#	Article	IF	CITATIONS
19	Exclusion of NFAT5 from Mitotic Chromatin Resets Its Nucleo-Cytoplasmic Distribution in Interphase. PLoS ONE, 2009, 4, e7036.	2.5	8
20	Brx Shines a Light on the Route from Hyperosmolarity to NFAT5. Science Signaling, 2009, 2, pe20.	3.6	17
21	The Transcription Factor NFAT5 Is Required for Cyclin Expression and Cell Cycle Progression in Cells Exposed to Hypertonic Stress. PLoS ONE, 2009, 4, e5245.	2.5	43
22	Analysis of the transcriptional activity of endogenous NFAT5 in primary cells using transgenic NFAT-luciferase reporter mice. BMC Molecular Biology, 2008, 9, 13.	3.0	35
23	Regulation of the hypertonic stress response and other cellular functions by the Rel-like transcription factor NFAT5. Biochemical Pharmacology, 2006, 72, 1597-1604.	4.4	112
24	Concentrations of cyclosporin A and FK506 that inhibit IL-2 induction in human T cells do not affect TGF-β1 biosynthesis, whereas higher doses of cyclosporin A trigger apoptosis and release of preformed TGF-β1. Journal of Leukocyte Biology, 2005, 77, 748-758.	3.3	32
25	Selective inhibition of calcineurin-NFAT signaling by blocking protein-protein interaction with small organic molecules. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 7554-7559.	7.1	154
26	Calcineurin: a central controller of signalling in eukaryotes. EMBO Reports, 2004, 5, 343-348.	4.5	140
27	Variation of the prion gene in chimpanzees and its implication for prion diseases. Neuroscience Letters, 2004, 355, 157-160.	2.1	7
28	The Hepatitis B Virus X Protein Binds to and Activates the NH2-Terminal trans-Activation Domain of Nuclear Factor of Activated T Cells-1. Virology, 2002, 299, 288-300.	2.4	21
29	Bridging the NFAT and NF-κB Families. Immunity, 2001, 15, 47-58.	14.3	231
30	Calcineurin: From structure to function. Current Topics in Cellular Regulation, 2001, 36, 237-295.	9.6	273
31	The Hepatitis B Virus X Protein Induces HIV-1 Replication and Transcription in Synergy with T-cell Activation Signals. Journal of Biological Chemistry, 2001, 276, 35435-35443.	3.4	95
32	Transgenic expression of green fluorescence protein can cause dilated cardiomyopathy. Nature Medicine, 2000, 6, 482-483.	30.7	246
33	Manipulating Immune Responses with Immunosuppressive Agents that Target NFAT. Immunity, 2000, 12, 359-372.	14.3	267
34	Concerted Dephosphorylation of the Transcription Factor NFAT1 Induces a Conformational Switch that Regulates Transcriptional Activity. Molecular Cell, 2000, 6, 539-550.	9.7	418
35	NFAT5, a constitutively nuclear NFAT protein that does not cooperate with Fos and Jun. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 7214-7219.	7.1	352
36	Affinity-Driven Peptide Selection of an NFAT Inhibitor More Selective Than Cyclosporin A. Science, 1999, 285, 2129-2133.	12.6	562

J Aramburu

#	Article	IF	CITATIONS
37	NF-AT5: The NF-AT Family of Transcription Factors Expands in a New Direction. Cold Spring Harbor Symposia on Quantitative Biology, 1999, 64, 517-526.	1.1	35
38	The Jak family tyrosine kinase Jak3 is required for IL-2 synthesis by naive/resting CD4+ T cells. Journal of Immunology, 1999, 163, 5411-7.	0.8	13
39	Selective Inhibition of NFAT Activation by a Peptide Spanning the Calcineurin Targeting Site of NFAT. Molecular Cell, 1998, 1, 627-637.	9.7	268
40	Two-site Interaction of Nuclear Factor of Activated T Cells with Activated Calcineurin. Journal of Biological Chemistry, 1998, 273, 23877-23883.	3.4	91
41	Transient cardiac expression of constitutively active GÂq leads to hypertrophy and dilated cardiomyopathy by calcineurin-dependent and independent pathways. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 13893-13898.	7.1	243
42	Blockade of T-Cell Activation by Dithiocarbamates Involves Novel Mechanisms of Inhibition of Nuclear Factor of Activated T Cells. Molecular and Cellular Biology, 1997, 17, 6437-6447.	2.3	58
43	Leiomyosarkom des Nierenbeckens mit Metastasierung in Lunge und Rektum. Coloproctology, 1997, 19, 45-47.	0.3	2
44	Interaction of calcineurin with a domain of the transcription factor NFAT1 that controls nuclear import Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 8907-8912.	7.1	164
45	Activation and expression of the nuclear factors of activated T cells, NFATp and NFATc, in human natural killer cells: regulation upon CD16 ligand binding Journal of Experimental Medicine, 1995, 182, 801-810.	8.5	130
46	Functional ambivalence of the Kp43 (CD94) NK cell-associated surface antigen. Journal of Immunology, 1995, 154, 5779-88.	0.8	93
47	Tyrosine kinase-dependent activation of human NK cell functions upon stimulation through a 58-kDa surface antigen selectively expressed on discrete subsets of NK cells and T lymphocytes. Journal of Immunology, 1994, 152, 1662-73.	0.8	49
48	Variability in the expression of a β2-microglobulin epitope on hepatocytes in chronic type C hepatitis on treatment with interferon. Hepatology, 1993, 17, 372-382.	7.3	21
49	Variability in the expression of a beta 2-microglobulin epitope on hepatocytes in chronic type C hepatitis on treatment with interferon. Hepatology, 1993, 17, 372-82.	7.3	4
50	Stimulation of IL-2-activated natural killer cells through the Kp43 surface antigen up-regulates TNF-alpha production involving the LFA-1 integrin. Journal of Immunology, 1993, 151, 3420-9.	0.8	14
51	A novel functional cell surface dimer (kp43) serves as accessory molecule for the activation of a subset of human gamma delta T cells. Journal of Immunology, 1993, 151, 1312-21.	0.8	18
52	Phospholipase D activation in human natural killer cells through the Kp43 and CD16 surface antigens takes place by different mechanisms. Involvement of the phospholipase D pathway in tumor necrosis factor alpha synthesis Journal of Experimental Medicine, 1992, 176, 9-17.	8.5	38
53	Identification of Natural Killer (NK) Cells in Lesions of Human Cutaneous Graft-Versus-Host Disease: Expression of a Novel NK-Associated Surface Antigen (Kp43) in Mononuclear Infiltrates. Journal of Investigative Dermatology, 1991, 97, 659-666.	0.7	34
54	A novel functional cell surface dimer (Kp43) expressed by natural killer cells and gamma/delta TCR+ T lymphocytes. II. Modulation of natural killer cytotoxicity by anti-Kp43 monoclonal antibody. Journal of Immunology, 1991, 147, 714-21.	0.8	44

#	Article	IF	CITATIONS
55	A novel functional cell surface dimer (Kp43) expressed by natural killer cells and T cell receptor-gamma/delta+ T lymphocytes. I. Inhibition of the IL-2-dependent proliferation by anti-Kp43 monoclonal antibody. Journal of Immunology, 1990, 144, 3238-47.	0.8	83