
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2050122/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dealing with â€~the spectre of "spurious" correlations': hazards in comparing ratios and other derived variables with a randomization test to determine if a biological interpretation is justified. Oikos, 2022, 2022, .	2.7	6
2	Isolation and self-regulation processes in simulated postfire microsites promote plant species diversity. Acta Oecologica, 2022, 114, 103795.	1.1	5
3	High summer temperatures do not interact with fire to promote germination among seeds of Cistaceae: a reinterpretation of Luna (2020) with extra data on wet/dry conditions*. Plant Ecology, 2022, 223, 141-149.	1.6	5
4	Seed biologists beware: Estimates of initial viability based on ungerminated seeds at the end of an experiment may be errorâ€prone. Plant Biology, 2022, 24, 399-403.	3.8	1
5	Historical links between climate and fire on species dispersion and trait evolution. Plant Ecology, 2022, 223, 711-732.	1.6	7
6	Fireâ€released seed dormancy ―a global synthesis. Biological Reviews, 2022, 97, 1612-1639.	10.4	37
7	Ancient Rhamnaceae flowers impute an origin for flowering plants exceeding 250-million-years ago. IScience, 2022, 25, 104642.	4.1	10
8	Evaluation of seven indices of onâ€plant seed storage (serotiny) shows that the linear slope is best. Journal of Ecology, 2021, 109, 4-18.	4.0	9
9	Plant functional types determine how close postfire seedlings are from their parents in a species-rich shrubland. Annals of Botany, 2021, 127, 381-395.	2.9	4
10	Fire-mediated germination syndromes in Leucadendron (Proteaceae) and their functional correlates. Oecologia, 2021, 196, 589-604.	2.0	9
11	AusTraits, a curated plant trait database for the Australian flora. Scientific Data, 2021, 8, 254.	5.3	73
12	Plant Tannins and Essential Oils Have an Additive Deterrent Effect on Diet Choice by Kangaroos. Forests, 2021, 12, 1639.	2.1	3
13	Matrix-level co-occurrence metrics are sensitive to sampling grain: a case study in species-rich shrublands. Plant Ecology, 2020, 221, 1083-1090.	1.6	6
14	Fire as a Selective Agent for both Serotiny and Nonserotiny Over Space and Time. Critical Reviews in Plant Sciences, 2020, 39, 140-172.	5.7	59
15	Sclerophyll Shrublands of Southwestern Australia. , 2020, , 857-868.		0
16	Environmental drivers and genomic architecture of trait differentiation in fireâ€adapted <i>Banksia attenuata</i> ecotypes. Journal of Integrative Plant Biology, 2019, 61, 417-432.	8.5	10
17	Fire as a key driver of Earth's biodiversity. Biological Reviews, 2019, 94, 1983-2010.	10.4	263
18	Fire as a pre-emptive evolutionary trigger among seed plants. Perspectives in Plant Ecology, Evolution and Systematics, 2019, 36, 13-23.	2.7	17

#	Article	IF	CITATIONS
19	Evolutionary history of fireâ€stimulated resprouting, flowering, seed release and germination. Biological Reviews, 2019, 94, 903-928.	10.4	81
20	Fire as a Potent Mutagenic Agent Among Plants. Critical Reviews in Plant Sciences, 2018, 37, 1-14.	5.7	24
21	Unearthing belowground bud banks in fireâ€prone ecosystems. New Phytologist, 2018, 217, 1435-1448.	7.3	257
22	Biological and geophysical feedbacks with fire in the Earth system. Environmental Research Letters, 2018, 13, 033003.	5.2	198
23	Ecology and biogeography in 3D: The case of the Australian Proteaceae. Journal of Biogeography, 2018, 45, 1469-1477.	3.0	23
24	Fire and Plant Diversification in Mediterranean-Climate Regions. Frontiers in Plant Science, 2018, 9, 851.	3.6	81
25	Resprouters, assisted by somatic mutations, are as genetically diverse as nonsprouters in the world's fire-prone ecosystems. Acta Oecologica, 2018, 92, 1-6.	1.1	2
26	Baptism by fire: the pivotal role of ancient conflagrations in evolution of the Earth's flora. National Science Review, 2018, 5, 237-254.	9.5	58
27	Combustion temperatures and nutrient transfers when grasstrees burn. Forest Ecology and Management, 2017, 399, 179-187.	3.2	13
28	Fire-Proneness as a Prerequisite for the Evolution of Fire-Adapted Traits. Trends in Plant Science, 2017, 22, 278-288.	8.8	73
29	African geoxyles evolved in response to fire; frost came later. Evolutionary Ecology, 2017, 31, 603-617.	1.2	44
30	When did a Mediterranean-type climate originate in southwestern Australia?. Global and Planetary Change, 2017, 156, 46-58.	3.5	20
31	Small-seeded Hakea species tolerate cotyledon loss better than large-seeded congeners. Scientific Reports, 2017, 7, 41520.	3.3	4
32	Communityâ€level spatial structure supports a model of stochastic geometry in speciesâ€rich shrublands. Oikos, 2017, 126, 833-842.	2.7	13
33	Pre-Gondwanan-breakup origin of <i>Beauprea</i> (Proteaceae) explains its historical presence in New Caledonia and New Zealand. Science Advances, 2016, 2, e1501648.	10.3	24
34	Bird pollinators, seed storage and cockatoo granivores explain large woody fruits as best seed defense in Hakea. Perspectives in Plant Ecology, Evolution and Systematics, 2016, 21, 55-77.	2.7	12
35	Mediterranean Biomes: Evolution of Their Vegetation, Floras, and Climate. Annual Review of Ecology, Evolution, and Systematics, 2016, 47, 383-407.	8.3	184
36	A Cretaceous origin for fire adaptations in the Cape flora. Scientific Reports, 2016, 6, 34880.	3.3	29

#	Article	IF	CITATIONS
37	Competition and facilitation between Australian and Spanish legumes in seven Australian soils. Plant Species Biology, 2016, 31, 256-271.	1.0	12
38	Total growth and root-cluster production by legumes and proteas depends on rhizobacterial strain, host species and nitrogen level. Annals of Botany, 2016, 118, 725-732.	2.9	8
39	A 350â€millionâ€year legacy of fire adaptation amongÂconifers. Journal of Ecology, 2016, 104, 352-363.	4.0	52
40	Fitness benefits of serotiny in fire- and drought-prone environments. Plant Ecology, 2016, 217, 773-779.	1.6	52
41	Hakea, the world's most sclerophyllous genus, arose in southwestern Australian heathland and diversified throughout Australia over the past 12 million years. Australian Journal of Botany, 2016, 64, 77.	0.6	25
42	<scp>LMA</scp> , density and thickness: recognizing different leaf shapes and correcting for their nonlaminarity. New Phytologist, 2015, 207, 942-947.	7.3	22
43	Seed Size, Fecundity and Postfire Regeneration Strategy Are Interdependent in Hakea. PLoS ONE, 2015, 10, e0129027.	2.5	11
44	Soil bacteria hold the key to root cluster formation. New Phytologist, 2015, 206, 1156-1162.	7.3	21
45	Genetic and ecological consequences of interactions between three banksias in mediterraneanâ€ŧype shrubland. Journal of Vegetation Science, 2014, 25, 617-626.	2.2	2
46	Resistance and resilience to changing climate and fire regime depend on plant functional traits. Journal of Ecology, 2014, 102, 1572-1581.	4.0	162
47	Stochastic geometry best explains spatial associations among species pairs and plant functional types in speciesâ€rich shrublands. Oikos, 2014, 123, 99-110.	2.7	17
48	Biomass and litter accumulation patterns in species-rich shrublands for fire hazard assessment. International Journal of Wildland Fire, 2014, 23, 860.	2.4	14
49	Adaptive responses to directional trait selection in the Miocene enabled Cape proteas to colonize the savanna grasslands. Evolutionary Ecology, 2013, 27, 1099-1115.	1.2	42
50	Do plant functional traits determine spatial pattern? A test on speciesâ€rich shrublands, <scp>W</scp> estern <scp>A</scp> ustralia. Journal of Vegetation Science, 2013, 24, 441-452.	2.2	20
51	Resprouting as a key functional trait: how buds, protection and resources drive persistence after fire. New Phytologist, 2013, 197, 19-35.	7.3	630
52	Species-Specific Traits plus Stabilizing Processes Best Explain Coexistence in Biodiverse Fire-Prone Plant Communities. PLoS ONE, 2013, 8, e65084.	2.5	7
53	Seeds as a Source of Carbon, Nitrogen, and Phosphorus for Seedling Establishment in Temperate Regions: A Synthesis. American Journal of Plant Sciences, 2013, 04, 30-40.	0.8	28
54	Fireâ€∎dapted traits of <i>Pinus</i> arose in the fiery Cretaceous. New Phytologist, 2012, 194, 751-759.	7.3	225

#	Article	IF	CITATIONS
55	Fire-adapted Gondwanan Angiosperm floras evolved in the Cretaceous. BMC Evolutionary Biology, 2012, 12, 223.	3.2	59
56	Low Rate of Between-Population Seed Dispersal Restricts Genetic Connectivity and Metapopulation Dynamics in a Clonal Shrub. PLoS ONE, 2012, 7, e50974.	2.5	27
57	Phylogenetic and phenotypic structure among <i>Banksia</i> communities in southâ€western Australia. Journal of Biogeography, 2012, 39, 397-407.	3.0	16
58	Migration potential as a new predictor of long-distance dispersal rate for plants. Nature Precedings, 2011, , .	0.1	0
59	Banksia born to burn. New Phytologist, 2011, 191, 184-196.	7.3	158
60	Regional and local effects on reproductive allocation in epicormic and lignotuberous populations of Banksia menziesii. Plant Ecology, 2011, 212, 2003-2011.	1.6	14
61	Fitness and evolution of resprouters in relation to fire. Plant Ecology, 2011, 212, 1945-1957.	1.6	84
62	Fire-stimulated flowering among resprouters and geophytes in Australia and South Africa. Plant Ecology, 2011, 212, 2111-2125.	1.6	159
63	Low-dimensional trade-offs fail to explain richness and structure in species-rich plant communities. Theoretical Ecology, 2011, 4, 495-511.	1.0	11
64	Species versus genotypic diversity of a nitrogenâ€fixing plant functional group in a metacommunity. Population Ecology, 2010, 52, 337-345.	1.2	29
65	High microsatellite genetic diversity fails to predict greater population resistance to extreme drought. Conservation Genetics, 2010, 11, 1445-1451.	1.5	13
66	Phosphorus accumulation in Proteaceae seeds: a synthesis. Plant and Soil, 2010, 334, 61-72.	3.7	57
67	Sensitivity of plant functional types to climate change: classification tree analysis of a simulation model. Journal of Vegetation Science, 2010, 21, 447-461.	2.2	27
68	Contrasting spatial pattern and pattern-forming processes in natural vs. restored shrublands. Journal of Applied Ecology, 2010, 47, 701-709.	4.0	19
69	Herbivore feeding preferences in captive and wild populations. Austral Ecology, 2010, 35, 257-263.	1.5	16
70	Genetic connectivity and inter-population seed dispersal of Banksia hookeriana at the landscape scale. Annals of Botany, 2010, 106, 457-466.	2.9	20
71	The fire ephemeral Tersonia cyathiflora (Gyrostemonaceae) germinates in response to smoke but not the butenolide 3-methyl-2H-furo[2,3-c]pyran-2-one. Annals of Botany, 2010, 106, 381-384.	2.9	30
72	Correlations between leaf toughness and phenolics among species in contrasting environments of Australia and New Caledonia. Annals of Botany, 2009, 103, 757-767.	2.9	60

#	Article	IF	CITATIONS
73	Species–area functions revisited. Journal of Biogeography, 2009, 36, 1994-2004.	3.0	63
74	Longâ€distance dispersal of seeds in the fireâ€ŧolerant shrub <i>Banksia attenuata</i> . Ecography, 2009, 32, 571-580.	4.5	34
75	Contrasting impacts of pollen and seed dispersal on spatial genetic structure in the bird-pollinated Banksia hookeriana. Heredity, 2009, 102, 274-285.	2.6	65
76	Nearestâ€neighbour interactions in speciesâ€rich shrublands: the roles of abundance, spatial patterns and resources. Oikos, 2009, 118, 161-174.	2.7	43
77	Dispersal, edaphic fidelity and speciation in speciesâ€ r ich Western Australian shrublands: evaluating a neutral model of biodiversity. Oikos, 2009, 118, 1349-1362.	2.7	18
78	Comparison of Postâ€Mine Rehabilitated and Natural Shrubland Communities in Southwestern Australia. Restoration Ecology, 2009, 17, 577-585.	2.9	41
79	Ants cannot account for interpopulation dispersal of the arillate pea <i>Daviesia triflora</i> . New Phytologist, 2009, 181, 725-733.	7.3	25
80	Pollination and plant defence traits coâ€vary in Western Australian <i>Hakeas</i> . New Phytologist, 2009, 182, 251-260.	7.3	69
81	Impact of fire on plant-species persistence in post-mine restored and natural shrubland communities in southwestern Australia. Biological Conservation, 2009, 142, 2175-2180.	4.1	26
82	Distribution of myrmecochorous species over the landscape and their potential longâ€distance dispersal by emus and kangaroos. Diversity and Distributions, 2008, 14, 11-17.	4.1	37
83	Patchy plant distribution promotes invasion by exotics in south-western Australia. Ecological Management and Restoration, 2008, 9, 77-82.	1.5	1
84	Covariation between intraspecific genetic diversity and species diversity within a plant functional group. Journal of Ecology, 2008, 96, 956-961.	4.0	51
85	Simulating the effects of different spatioâ€temporal fire regimes on plant metapopulation persistence in a Mediterraneanâ€type region. Journal of Applied Ecology, 2008, 45, 1477-1485.	4.0	17
86	Assessing the importance of seed immigration on coexistence of plant functional types in a species-rich ecosystem. Ecological Modelling, 2008, 213, 402-416.	2.5	26
87	Polymorphic microsatellite DNA markers for <i>Daviesia triflora</i> (Papilionaceae). Molecular Ecology Resources, 2008, 8, 1475-1476.	4.8	2
88	Polymorphic microsatellite DNA markers for <i>Banksia hookeriana</i> (Proteaceae). Molecular Ecology Resources, 2008, 8, 1515-1517.	4.8	7
89	Plant structural traits and their role in anti-herbivore defence. Perspectives in Plant Ecology, Evolution and Systematics, 2007, 8, 157-178.	2.7	647
90	Selective herbivory by mammals on 19 species planted at two densities. Acta Oecologica, 2007, 32, 1-13.	1.1	13

#	Article	IF	CITATIONS
91	SOIL VS. CANOPY SEED STORAGE AND PLANT SPECIES COEXISTENCE IN SPECIES-RICH AUSTRALIAN SHRUBLANDS. Ecology, 2007, 88, 2292-2304.	3.2	64
92	Relative effects of mammal herbivory and plant spacing on seedling recruitment following fire and mining. BMC Ecology, 2007, 7, 13.	3.0	7
93	Error in the inference of fire history from grasstrees. Austral Ecology, 2007, 32, 908-916.	1.5	15
94	Disentangling Competition, Herbivory, and Seasonal Effects on Young Plants in Newly Restored Communities. Restoration Ecology, 2007, 15, 250-262.	2.9	14
95	Polymorphic microsatellite DNA markers for Banksia attenuata (Proteaceae). Molecular Ecology Notes, 2007, 7, 1329-1331.	1.7	12
96	Record error and range contraction, real and imagined, in the restricted shrub Banksia hookeriana in southâ€western Australia. Diversity and Distributions, 2007, 13, 406-417.	4.1	39
97	Effects of Novel and Historic Predator Urines on Semi-Wild Western Grey Kangaroos. Journal of Wildlife Management, 2007, 71, 1225-1228.	1.8	31
98	Conservation biology of banksias: insights from natural history to simulation modelling. Australian Journal of Botany, 2007, 55, 280.	0.6	42
99	Planting density effects and selective herbivory by kangaroos on species used in restoring forest communities. Forest Ecology and Management, 2006, 229, 39-49.	3.2	17
100	Resilience of two <i>Banksia</i> species to global change: Comparing results of bioclimatic modelling, demographic and translocation studies. International Journal of Biodiversity Science and Management, 2006, 2, 59-72.	0.7	11
101	Emus as nonâ€standard seed dispersers and their potential for longâ€distance dispersal. Ecography, 2006, 29, 632-640.	4.5	82
102	Anomalies in grasstree fire history reconstructions for south-western Australian vegetation: Reply from Enright N. J., Lamont B. B. and Miller B. P Austral Ecology, 2006, 31, 792-793.	1.5	3
103	Late Quaternary climate change and spatial genetic structure in the shrub Banksia hookeriana. Molecular Ecology, 2006, 15, 1125-1137.	3.9	13
104	How energy and coavailable foods affect forage selection by the western grey kangaroo. Animal Behaviour, 2006, 71, 765-772.	1.9	9
105	Grasstree (Xanthorrhoea preissii) recovery after fire in two seasons and habitats. Australian Journal of Botany, 2005, 53, 509.	0.6	5
106	Assessing the generality of global leaf trait relationships. New Phytologist, 2005, 166, 485-496.	7.3	1,704
107	Rainfall reliability, a neglected factor in explaining convergence and divergence of plant traits in fire-prone mediterranean-climate ecosystems. Global Ecology and Biogeography, 2005, 14, 509-519.	5.8	216
108	Anomalies in grasstree fire history reconstructions for south-western Australian vegetation. Austral Ecology, 2005, 30, 668-673.	1.5	22

#	Article	IF	CITATIONS
109	Grasstree (Xanthorrhoea preissii) leaf growth in relation to season and water availability. Austral Ecology, 2005, 30, 765-774.	1.5	1
110	Temporal patterns of genetic variation across a 9-year-old aerial seed bank of the shrub Banksia hookeriana (Proteaceae). Molecular Ecology, 2005, 14, 4169-4179.	3.9	48
111	Selective feeding by kangaroos (Macropus fuliginosus) on seedlings of Hakea species: Effects of chemical and physical defences. Plant Ecology, 2005, 177, 201-208.	1.6	30
112	Leaf Mechanical Properties in Sclerophyll Woodland and Shrubland on Contrasting Soils. Plant and Soil, 2005, 276, 95-113.	3.7	43
113	Response to water deficit and high temperature of transgenic peas (Pisum sativum L.) containing a seed-specific Â-amylase inhibitor and the subsequent effects on pea weevil (Bruchus pisorum L.) survival. Journal of Experimental Botany, 2004, 55, 497-505.	4.8	35
114	Long-distance seed dispersal in a metapopulation of Banksia hookeriana inferred from a population allocation analysis of amplified fragment length polymorphism data. Molecular Ecology, 2004, 13, 1099-1109.	3.9	136
115	Grazing by Kangaroos Limits the Establishment of the Grass Trees Xanthorrhoea gracilis and X. preissii in Restored Bauxite Mines in Eucalypt Forest of Southwestern Australia. Restoration Ecology, 2004, 12, 297-305.	2.9	27
116	The worldwide leaf economics spectrum. Nature, 2004, 428, 821-827.	27.8	6,489
117	Ecology and ecophysiology of grasstrees. Australian Journal of Botany, 2004, 52, 561.	0.6	46
118	Short Communication: Leaf trait relationships in Australian plant species. Functional Plant Biology, 2004, 31, 551.	2.1	123
119	Heat damage in sclerophylls is influenced by their leaf properties and plant environment. Ecoscience, 2004, 11, 94-101.	1.4	38
120	Are seed set and speciation rates always low among species that resprout after fire, and why?. Evolutionary Ecology, 2003, 17, 277-292.	1.2	113
121	Kangaroos Avoid Eating Seedlings with or Near Others with Volatile Essential Oils. Journal of Chemical Ecology, 2003, 29, 2621-2635.	1.8	20
122	Structure, ecology and physiology of root clusters – a review. Plant and Soil, 2003, 248, 1-19.	3.7	199
123	Anthropogenic disturbance promotes hybridization between Banksia species by altering their biology. Journal of Evolutionary Biology, 2003, 16, 551-557.	1.7	128
124	Performance of nonparametric species richness estimators in a high diversity plant community. Diversity and Distributions, 2003, 9, 283-295.	4.1	144
125	Genetic Variation and Biogeographic History in the Restricted Southwestern Australian Shrub, Banksia Hookeriana. Physical Geography, 2003, 24, 358-377.	1.4	7
126	?13C and water-use efficiency in Australian grasstrees and South African conifers over the last century. Oecologia, 2003, 136, 205-212.	2.0	8

#	Article	IF	CITATIONS
127	Nodulation and performance of exotic and native legumes in Australian soils. Australian Journal of Botany, 2003, 51, 543.	0.6	17
128	Structure, ecology and physiology of root clusters $\hat{a} \in \mathbb{C}$ a review. , 2003, , 1-19.		2
129	Seed Dormancy, After-ripening and Light Requirements of Four Annual Asteraceae in South-western Australia. Annals of Botany, 2002, 90, 707-714.	2.9	88
130	The Anatomy and Chemistry of the Colour Bands of Grasstree Stems (Xanthorrhoea preissii) used for Plant Age and Fire History Determination. Annals of Botany, 2002, 89, 605-612.	2.9	11
131	Germination requirements and seedling responses to water availability and soil type in four eucalypt species. Acta Oecologica, 2002, 23, 23-30.	1.1	60
132	Green cotyledons of two Hakea species control seedling mass and morphology by supplying mineral nutrients rather than organic compounds. New Phytologist, 2002, 153, 101-110.	7.3	49
133	Relationships between physical and chemical attributes of congeneric seedlings: how important is seedling defence?. Functional Ecology, 2002, 16, 216-222.	3.6	64
134	High leaf mass per area of related species assemblages may reflect low rainfall and carbon isotope discrimination rather than low phosphorus and nitrogen concentrations. Functional Ecology, 2002, 16, 403-412.	3.6	137
135	A spatial model of coexistence among threeBanksiaspecies along a topographic gradient in fire-prone shrublands. Journal of Ecology, 2002, 90, 762-774.	4.0	43
136	Grasstrees reveal contrasting fire regimes in eucalypt forest before and after European settlement of southwestern Australia. Forest Ecology and Management, 2001, 150, 323-329.	3.2	60
137	Conservation requirements of an exploited wildflower: modelling the effects of plant age, growing conditions and harvesting intensity. Biological Conservation, 2001, 99, 157-168.	4.1	28
138	Herbivory, serotiny and seedling defence in Western Australian Proteaceae. Oecologia, 2001, 126, 409-417.	2.0	78
139	The ecology of seeds and seedlings. Journal of Biogeography, 2001, 28, 547-548.	3.0	2
140	Title is missing!. Plant Ecology, 2001, 155, 219-227.	1.6	14
141	Adaptive advantages of aerial seed banks. Plant Species Biology, 2000, 15, 157-166.	1.0	95
142	Plant size and season of burn affect flowering and fruiting of the grasstree Xanthorrhoea preissii. Austral Ecology, 2000, 25, 268-272.	1.5	33
143	Utilizable water in leaves of 8 arid species as derived from pressure-volume curves and chlorophyll fluorescence. Physiologia Plantarum, 2000, 110, 64-71.	5.2	42
144	Germination of seven exotic weeds and seven native speciesin south-western Australia under steady and fluctuating water supply. Acta Oecologica, 2000, 21, 323-336.	1.1	49

#	Article	IF	CITATIONS
145	Heat pre-treatment and the germination of soil- and canopy-stored seeds of south-western Australian species. Acta Oecologica, 2000, 21, 315-321.	1.1	42
146	Recovery of Banksia and Hakea communities after fire in mediterranean Australia-the role of species identity and functional attributes. Diversity and Distributions, 1999, 5, 15-26.	4.1	18
147	Survival and growth of native and exotic composites in response to a nutrient gradient. Plant Ecology, 1999, 145, 125-132.	1.6	62
148	Modelling the persistence of an apparently immortal Banksia species after fire and land clearing. Biological Conservation, 1999, 88, 249-259.	4.1	56
149	Which common indices of sclerophylly best reflect differences in leaf structure?. Ecoscience, 1999, 6, 471-474.	1.4	45
150	Preface introducing the 'Turner Reviews'. Australian Journal of Botany, 1999, 47, I.	0.6	0
151	Seedling growth response to added nutrients depends on seed size in three woody genera. Journal of Ecology, 1998, 86, 624-632.	4.0	79
152	The ecological significance of canopy seed storage in fireâ€prone environments: a model for resprouting shrubs. Journal of Ecology, 1998, 86, 960-973.	4.0	76
153	The ecological significance of canopy seed storage in fire-prone environments: a model for non-sprouting shrubs. Journal of Ecology, 1998, 86, 946-959.	4.0	173
154	Seed Production, Pollinator Attractants and Breeding System in Relation to Fire Response — Are There Reproductive Syndromes among Co-occurring Proteaceous Shrubs?. Australian Journal of Botany, 1998, 46, 377.	0.6	26
155	On the Nature of Gondwanan Species Flocks: Diversity of Proteaceae in Mediterranean South-western Australia and South Africa. Australian Journal of Botany, 1998, 46, 335.	0.6	61
156	Seed and Seedling Biology of the Woody-fruited Proteaceae. Australian Journal of Botany, 1998, 46, 387.	0.6	59
157	Removal of the testa during germination or establishment increases germinant mortality, decay and water loss. Seed Science Research, 1997, 7, 245-252.	1.7	12
158	A Trade-off between Fecundity and Drought Susceptibility in Adults and Seedlings of Hakea Species as Influenced by Leaf Morphology. Australian Journal of Botany, 1997, 45, 301.	0.6	10
159	FLORAL COLOR CHANGE AND INSECT POLLINATION: A DYNAMIC RELATIONSHIP. Israel Journal of Plant Sciences, 1997, 45, 185-199.	0.5	72
160	Influence of Leaf Type and Plant Age on Leaf Structure and Sclerophylly in Hakea (Proteaceae). Australian Journal of Botany, 1997, 45, 827.	0.6	29
161	Fruit-seed relations in Hakea: serotinous species invest more dry matter in predispersal seed protection. Austral Ecology, 1997, 22, 352-355.	1.5	35
162	Does the rare Banksia goodii have inferior vegetative, reproductive or ecological attributes compared with its widespread co-occurring relative B. gardneri?. Journal of Biogeography, 1997, 24, 469-482.	3.0	55

#	Article	IF	CITATIONS
163	Xerophytic implications of increased sclerophylly: interactions with water and light in Hakea psilorrhyncha seedlings. New Phytologist, 1997, 136, 231-237.	7.3	76
164	Seed/cotyledon size and nutrient content play a major role in early performance of species on nutrient-poor soils. New Phytologist, 1997, 137, 665-672.	7.3	179
165	Plant diversity in mediterranean-climate regions. Trends in Ecology and Evolution, 1996, 11, 362-366.	8.7	823
166	The ecology of fire. Trends in Ecology and Evolution, 1996, 11, 392.	8.7	0
167	Canopy Seed Bank Dynamics and Optimum Fire Regime for the Highly Serotinous Shrub, Banksia Hookeriana. Journal of Ecology, 1996, 84, 9.	4.0	108
168	Biogeography of Banksia in southwestern Australia. Journal of Biogeography, 1996, 23, 295-309.	3.0	44
169	Post-fire mortality and water relations of three congeneric shrub species under extreme water stress ? a trade-off with fecundity?. Oecologia, 1996, 107, 53-60.	2.0	54
170	Disproportionate allocation of mineral nutrients and carbon between vegetative and reproductive structures in Banksia hookeriana. Oecologia, 1996, 105, 38-42.	2.0	60
171	Non-linearities, synergisms and plant extinctions in South African fynbos and Australian kwongan. Biodiversity and Conservation, 1996, 5, 1035-1046.	2.6	13
172	Nutrient Losses from Commercial Picking and Cockatoo Removal of Banksia hookeriana Blooms at the Organ, Plant and Site Levels. Journal of Applied Ecology, 1996, 33, 131.	4.0	12
173	A test for lottery recruitment among four Banksia species based on their demography and biological attributes. Oecologia, 1995, 101, 299-308.	2.0	46
174	Coexistence ofBanksiaspecies in southwestern Australia: the role of regional and local processes. Journal of Vegetation Science, 1995, 6, 329-342.	2.2	36
175	COMMERCIAL PICKING OF BANKSIA HOOKERIANA FROM NATURAL POPULATIONS ADVERSELY AFFECTS SHOOT, FLOWER AND SEED PRODUCTION AND PLANT NUTRIENT STATUS. Acta Horticulturae, 1995, , 23-32.	0.2	1
176	THREATS TO THE CONSERVATION OF SOUTHWESTERN AUSTRALIAN PROTEACEAE. Acta Horticulturae, 1995, , 9-18.	0.2	9
177	Testing the Effect of Ecosystem Composition/Structure on Its Functioning. Oikos, 1995, 74, 283.	2.7	35
178	Fire enhances weed invasion of roadside vegetation in southwestern Australia. Biological Conservation, 1995, 73, 45-49.	4.1	80
179	Mineral Nutrient Relations in Mediterranean Regions of California, Chile, and Australia. Ecological Studies, 1995, , 211-235.	1.2	32
180	Function of Biodiversity in the Mediterranean-Type Ecosystems of Southwestern Australia. Ecological Studies, 1995, , 233-284.	1.2	17

#	Article	IF	CITATIONS
181	Self-Crypsis in Hakea Trifurcata as an Avian Granivore Deterrent. Functional Ecology, 1994, 8, 110.	3.6	7
182	Comparative Size, Fecundity and Ecophysiology of Roadside Plants of Banksia hookeriana. Journal of Applied Ecology, 1994, 31, 137.	4.0	48
183	Commercial Picking of Banksia hookeriana in the Wild Reduces Subsequent Shoot, Flower and Seed Production. Journal of Applied Ecology, 1994, 31, 508.	4.0	52
184	Regional and local (road verge) effects on size and fecundity in <i>Banksia menziesii</i> . Austral Ecology, 1994, 19, 197-205.	1.2	38
185	Triangular trophic relationships in Mediterranean-climate Western Australia. Tasks for Vegetation Science, 1994, , 83-89.	0.6	0
186	Why are hairy root clusters so abundant in the most nutrient-impoverished soils of Australia?. Plant and Soil, 1993, 155-156, 269-272.	3.7	34
187	The effect of aluminium on the distribution of calcium, magnesium and phosphorus in mycorrhizal and non-mycorrhizal seedlings of Eucalyptus rudis: a cryo-microanalytical study. Plant and Soil, 1993, 155-156, 481-484.	3.7	12
188	Population fragmentation may reduce fertility to zero in Banksia goodii ? a demonstration of the Allee effect. Oecologia, 1993, 94, 446-450.	2.0	372
189	Population size and viability. Nature, 1993, 362, 211-211.	27.8	24
190	Plant senescence in fire-prone perennials. Trends in Ecology and Evolution, 1993, 8, 147.	8.7	1
191	Post-Fire Litter Microsites: Safe for Seeds, Unsafe for Seedlings. Ecology, 1993, 74, 501-512.	3.2	187
192	Fire May Stimulate Flowering, Branching, Seed Production and Seedling Establishment in Two Kangaroo Paws (Haemodoraceae). Journal of Applied Ecology, 1993, 30, 256.	4.0	30
193	Why are hairy root clusters so abundant in the most nutrient-impoverished soils of Australia?. , 1993, , 309-312.		17
194	Survival, Growth and Water Relations of Banksia Seedlings on a Sand Mine Rehabilitation Site and Adjacent Scrub-Heath Sites. Journal of Applied Ecology, 1992, 29, 663.	4.0	80
195	A Stochastic Model for the Viability of Banksia cuneata Populations: Environmental, Demographic and Genetic Effects. Journal of Applied Ecology, 1992, 29, 719.	4.0	100
196	Canopy Seed Storage and Release: What's in a Name?. Oikos, 1991, 60, 266.	2.7	67
197	Seed Bank and Population Dynamics of Banksia cuneata: The Role of Time, Fire, and Moisture. Botanical Gazette, 1991, 152, 114-122.	0.6	84
198	Canopy seed storage in woody plants. Botanical Review, The, 1991, 57, 277-317.	3.9	404

#	Article	IF	CITATIONS
199	Leaf specific mass confounds leaf density and thickness. Oecologia, 1991, 88, 486-493.	2.0	602
200	Water Relations, Shoot and Root Architecture, and Phenology of Three Co-Occurring Banksia Species: No Evidence for Niche Differentiation in the Pattern of Water Use. Oikos, 1991, 60, 291.	2.7	64
201	Seed Banks, Fire Season, Safe Sites and Seedling Recruitment in Five Co-Occurring Banksia Species. Journal of Ecology, 1989, 77, 1111.	4.0	197
202	Coexistence and Competitive Exclusion of Banksia hookeriana in the Presence of Congeneric Seedlings along a Topographic Gradient. Oikos, 1989, 56, 39.	2.7	54
203	Fire temperatures and follicleâ€opening requirements in 10 <i>Banksia</i> species. Austral Ecology, 1989, 14, 107-113.	1.2	50
204	Seed Production and Mortality in a Rare Banksia Species. Journal of Applied Ecology, 1988, 25, 551.	4.0	49
205	Sexual Versus Vegetative Reproduction in Banksia elegans. Botanical Gazette, 1988, 149, 370-375.	0.6	36
206	Constraints on Seed Production and Storage in a Root-Suckering Banksia. Journal of Ecology, 1988, 76, 1069.	4.0	43
207	Post-Fire Recruitment of Four Co-Occurring Banksia Species. Journal of Applied Ecology, 1987, 24, 645.	4.0	116
208	Seed Bank Dynamics of Four Co-Occurring Banksia Species. Journal of Ecology, 1987, 75, 289.	4.0	89
209	A numeric, geographic and structural analysis of the Hakea falcata group (Proteaceae). Botanical Journal of the Linnean Society, 1987, 94, 433-451.	1.6	3
210	THE SIGNIFICANCE OF PROTEOID ROOTS IN PROTEAS. Acta Horticulturae, 1986, , 163-170.	0.2	18
211	Mineral Nutrition of Sandalwood (Santalum spicatum). Journal of Experimental Botany, 1986, 37, 1274-1284.	4.8	31
212	Seed release in Banksia: the role of wet-dry cycles. Austral Ecology, 1985, 10, 169-171.	1.5	40
213	Dispersal of the winged fruits of Nuytsia floribunda (Loranthaceae). Austral Ecology, 1985, 10, 187-193.	1.5	30
214	Variation in serotiny of three Banksia species along a climatic gradient. Austral Ecology, 1985, 10, 345-350.	1.5	105
215	MYCOPHAGOUS MARSUPIALS AS DISPERSAL AGENTS FOR ECTOMYCORRHIZAL FUNGI ON EUCALYPTUS CALOPHYLLA AND GASTROLOBIUM BILOBUM. New Phytologist, 1985, 101, 651-656.	7.3	77
216	Absence of nitrogen fixation (acetylene reduction) by procaryotes in nectar of Banksias. Plant and Soil, 1985, 85, 443-445.	3.7	0

#	Article	IF	CITATIONS
217	The significance of flower colour change in eight co-occurring shrub species. Botanical Journal of the Linnean Society, 1985, 90, 145-155.	1.6	29
218	STRUCTURE, ENVIRONMENTAL EFFECTS ON THEIR FORMATION, AND FUNCTION OF PROTEOID ROOTS IN LEUCADENDRON LAUREOLUM (PROTEACEAE). New Phytologist, 1984, 97, 381-390.	7.3	48
219	Flammable infructescences in Banksia: a fruit-opening mechanism. Austral Ecology, 1984, 9, 295-296.	1.5	22
220	Root hair dimensions and surface/volume/weight ratios of roots with the aid of scanning electron microscopy. Plant and Soil, 1983, 74, 149-152.	3.7	28
221	Strategies for Maximizing Nutrient Uptake in Two Mediterranean Ecosystems of Low Nutrient Status. Ecological Studies, 1983, , 246-273.	1.2	20
222	Gas Content of Berries of the Australian Mistletoe Amyema preissii and the Effect of Maturity, Viscin, Temperature and Carbon Dioxide on Germination. Journal of Experimental Botany, 1982, 33, 790-798.	4.8	7
223	Distribution of Mineral Nutrients Between the Mistletoe, Amyema preissii, and its Host, Acacia acuminat. Annals of Botany, 1982, 49, 721-725.	2.9	50
224	The Reproductive Biology of Grevillea leucopteris (Proteaceae), Including Reference to its Glandular Hairs and Colonizing Potential. Flora: Morphology, Distribution, Functional Ecology of Plants, 1982, 172, 1-20.	1.2	30
225	Mechanisms for enhancing nutrient uptake in plants, with particular reference to mediterranean South Africa and Western Australia. Botanical Review, The, 1982, 48, 597-689.	3.9	286
226	Availability of water and inorganic nutrients in the persistent leaf bases of the grasstree Kingia australis, and uptake and translocation of labelled phosphate by the embedded aerial roots. Physiologia Plantarum, 1981, 52, 181-186.	5.2	11
227	TISSUE LONGEVITY OF THE ARBORESCENT MONOCOTYLEDON, KINGIA AUSTRALIS (XANTHORRHOEACEAE). American Journal of Botany, 1980, 67, 1262-1264.	1.7	2
228	Tissue Longevity of the Arborescent Monocotyledon, Kingia australis (Xanthorrhoeaceae). American Journal of Botany, 1980, 67, 1262.	1.7	4
229	The Longevity, Flowering and Fire History of the Grasstrees Xanthorrhoea preissii and Kingia australis. Journal of Applied Ecology, 1979, 16, 893.	4.0	57
230	The Q-statistic and the diversity of floras (reply). Nature, 1978, 275, 253-253.	27.8	0
231	Importance–value curves and diversity indices applied to a species-rich heathland in Western Australia. Nature, 1977, 265, 438-441.	27.8	83
232	'STALAGMIFORM' ROOTS IN LIMESTONE CAVES. New Phytologist, 1976, 76, 353-360.	7.3	13
233	THE BIOLOGY OF DAUCIFORM ROOTS IN THE SEDGE CYATHOCHAETE AVENACEA. New Phytologist, 1974, 73, 985-996.	7.3	52

234 2 Fire Adaptations. , 0, , .

#	Article	IF	CITATIONS
235	9 Leaf Properties. , 0, , .		1
236	How I became one of the world's top experts on fire research: despite all, when preparation meets opportunity, truth in science emerges. Ideas in Ecology and Evolution, 0, 14, .	0.1	1
237	Seed-coat thickness explains contrasting germination responses to smoke and heat in <i>Leucadendron</i> . Seed Science Research, 0, , 1-8.	1.7	1