List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2047944/publications.pdf Version: 2024-02-01

		126907	149698
59	3,549	33	56
papers	citations	h-index	g-index
117	117	117	2050
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	DNA position-specific repression of transcription by a Drosophila zinc finger protein Genes and Development, 1992, 6, 1865-1873.	5.9	420
2	Separate regulatory elements are responsible for the complex pattern of tissue-specific and developmental transcription of the yellow locus in Drosophila melanogaster Genes and Development, 1987, 1, 996-1004.	5.9	260
3	The role of insulator elements in defining domains of gene expression. Current Opinion in Genetics and Development, 1997, 7, 242-248.	3.3	215
4	Networking in the nucleus: a spotlight on LEM-domain proteins. Current Opinion in Cell Biology, 2015, 34, 1-8.	5.4	167
5	Regulation of Ribosomal Protein mRNA Content and Translation in Growth-Stimulated Mouse Fibroblasts. Molecular and Cellular Biology, 1982, 2, 685-693.	2.3	146
6	Genomic insulators: connecting properties to mechanism. Current Opinion in Cell Biology, 2003, 15, 259-265.	5.4	138
7	Enhancer Blocking by the Drosophila gypsy Insulator Depends Upon Insulator Anatomy and Enhancer Strength. Genetics, 1999, 153, 787-798.	2.9	114
8	The role of <i>Drosophila</i> Lamin C in muscle function and gene expression. Development (Cambridge), 2010, 137, 3067-3077.	2.5	112
9	Interactions of retrotransposons with the host genome: the case of the gypsy element of Drosophila. Trends in Genetics, 1991, 7, 86-90.	6.7	96
10	Regulation of Ribosomal Protein mRNA Content and Translation in Growth-Stimulated Mouse Fibroblasts. Molecular and Cellular Biology, 1982, 2, 685-693.	2.3	93
11	An endogenous Suppressor of Hairy-wing insulator separates regulatory domains in Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 13436-13441.	7.1	86
12	Nuclear organization: taking a position on gene expression. Current Opinion in Cell Biology, 2011, 23, 354-359.	5.4	83
13	A Conserved Long Noncoding RNA Affects Sleep Behavior in <i>Drosophila</i> . Genetics, 2011, 189, 455-468.	2.9	75
14	Polycomb Group Repression Is Blocked by the Drosophila suppressor of Hairy-wing [su(Hw)] Insulator. Genetics, 1998, 148, 331-339.	2.9	75
15	Position-independent germline transformation inDrosophilausing a cuticle pigmentation gene as a selectable marker. Nucleic Acids Research, 1992, 20, 5859-5860.	14.5	74
16	Two modes of transvection: Enhancer action in trans and bypass of a chromatin insulator in cis. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 10740-10745.	7.1	73
17	A test of insulator interactions in Drosophila. EMBO Journal, 2003, 22, 2463-2471.	7.8	72
18	A cis-regulatory Sequence Within the yellow Locus of Drosophila melanogaster Required for Normal Male Mating Success. Genetics, 2006, 172, 1009-1030.	2.9	68

#	Article	IF	CITATIONS
19	Mutant gene phenotypes mediated by a Drosophila melanogaster retrotransposon require sequences homologous to mammalian enhancers Proceedings of the National Academy of Sciences of the United States of America, 1988, 85, 8593-8597.	7.1	66
20	Core promoter elements can regulate transcription on a separate chromosome in trans. Genes and Development, 1999, 13, 253-258.	5.9	66
21	Genetic instability in Drosophila melanogaster: P-element mutagenesis by gene conversion Proceedings of the National Academy of Sciences of the United States of America, 1988, 85, 6455-6459.	7.1	62
22	Identification of Genomic Sites That Bind the Drosophila Suppressor of Hairy-wing Insulator Protein. Molecular and Cellular Biology, 2006, 26, 5983-5993.	2.3	62
23	Reversion of a gypsy-induced mutation at the yellow (y) locus of Drosophila melanogaster is associated with the insertion of a newly defined transposable element Proceedings of the National Academy of Sciences of the United States of America, 1988, 85, 3938-3942.	7.1	57
24	Enhancer action in trans is permitted throughout theDrosophilagenome. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 3723-3728.	7.1	55
25	An Analysis of Transvection at the yellow Locus of Drosophila melanogaster. Genetics, 1999, 151, 633-651.	2.9	51
26	Protecting against promiscuity: the regulatory role of insulators. Cellular and Molecular Life Sciences, 2002, 59, 2112-2127.	5.4	50
27	Molecular Genetic Analysis of the Nested Drosophila melanogaster Lamin C Gene. Genetics, 2005, 171, 185-196.	2.9	47
28	Genome-wide studies of the multi-zinc finger Drosophila Suppressor of Hairy-wing protein in the ovary. Nucleic Acids Research, 2012, 40, 5415-5431.	14.5	47
29	The insulator protein Suppressor of Hairy-wing is an essential transcriptional repressor in the <i>Drosophila </i> Ovary. Development (Cambridge), 2013, 140, 3613-3623.	2.5	47
30	A Comparative Study of Drosophila and Human A-Type Lamins. PLoS ONE, 2009, 4, e7564.	2.5	44
31	The role of the Suppressor of Hairy-wing insulator protein in Drosophila oogenesis. Developmental Biology, 2011, 356, 398-410.	2.0	43
32	Integrity of the Mod(mdg4)-67.2 BTB Domain Is Critical to Insulator Function in Drosophila melanogaster. Molecular and Cellular Biology, 2007, 27, 963-974.	2.3	40
33	Studies of the Role of the Drosophila scs and scs′ Insulators in Defining Boundaries of a Chromosome Puff. Molecular and Cellular Biology, 2004, 24, 1470-1480.	2.3	36
34	The gypsy retrotransposon ofDrosophila melanogaster: Mechanisms of mutagenesis and interaction with thesuppressor of Hairy-wing locus. Genesis, 1989, 10, 239-248.	2.1	33
35	Context Differences Reveal Insulator and Activator Functions of a Su(Hw) Binding Region. PLoS Genetics, 2008, 4, e1000159.	3.5	33
36	Tissue-Specific Defects Are Caused by Loss of the Drosophila MAN1 LEM Domain Protein. Genetics, 2008, 180, 133-145.	2.9	30

#	Article	IF	CITATIONS
37	Unique and Shared Functions of Nuclear Lamina LEM Domain Proteins in <i>Drosophila</i> . Genetics, 2014, 197, 653-665.	2.9	30
38	Investigation of the Properties of Non- <i>gypsy</i> Suppressor of Hairy-wing-Binding Sites. Genetics, 2008, 179, 1263-1273.	2.9	29
39	Deciphering the DNA code for the function of the Drosophila polydactyl zinc finger protein Suppressor of Hairy-wing. Nucleic Acids Research, 2017, 45, 4463-4478.	14.5	27
40	Molecular characterization of ovarian tumors in drosophila. Mechanisms of Development, 1994, 47, 151-164.	1.7	26
41	Mutations in the su(s) gene affect RNA processing in Drosophila melanogaster Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 7116-7120.	7.1	25
42	The Drosophila Nuclear Lamina Protein Otefin Is Required for Germline Stem Cell Survival. Developmental Cell, 2013, 25, 645-654.	7.0	23
43	Long-Range Repression by Multiple Polycomb Group (PcG) Proteins Targeted by Fusion to a Defined DNA-Binding Domain in Drosophila. Genetics, 2001, 158, 291-307.	2.9	23
44	Nuclear lamina dysfunction triggers a germline stem cell checkpoint. Nature Communications, 2018, 9, 3960.	12.8	20
45	Drosophila male and female germline stem cell niches require the nuclear lamina protein Otefin. Developmental Biology, 2016, 415, 75-86.	2.0	16
46	Drosophila female germline stem cells undergo mitosis without nuclear breakdown. Current Biology, 2021, 31, 1450-1462.e3.	3.9	15
47	Investigation of the Developmental Requirements of Drosophila HP1 and Insulator Protein Partner, HIPP1. G3: Genes, Genomes, Genetics, 2019, 9, 345-357.	1.8	13
48	Survival of Drosophila germline stem cells requires the chromatin binding protein Barrier-to-autointegration factor. Development (Cambridge), 2020, 147, .	2.5	13
49	Restoration of Topoisomerase 2 Function by Complementation of Defective Monomers in <i>Drosophila</i> . Genetics, 2012, 192, 843-856.	2.9	11
50	Nuclear architecture as an intrinsic regulator of Drosophila female germline stem cell maintenance. Current Opinion in Insect Science, 2020, 37, 30-38.	4.4	11
51	TFIIIC Boxes in the Genome. Cell, 2006, 125, 829-831.	28.9	8
52	Shining Light on the Dark Side of the Genome. Cells, 2022, 11, 330.	4.1	6
53	Spermiogenesis and Male Fertility Require the Function of Suppressor of Hairy-Wing in Somatic Cyst Cells of <i>Drosophila</i> . Genetics, 2018, 209, 757-772.	2.9	5
54	Editorial. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2008, 647, 1-2.	1.0	4

#	Article	IF	CITATIONS
55	Editorial overview: Genome architecture and expression: Connecting genome composition and nuclear architecture with function. Current Opinion in Genetics and Development, 2016, 37, iv-vi.	3.3	4
56	Nuclear Organization, Chromatin Structure, and Gene Silencing. , 2004, , 105-108.		1
57	Checkpoint activation drives global gene expression changes in Drosophila nuclear lamina mutants. G3: Genes, Genomes, Genetics, 2022, 12, .	1.8	1
58	Stacking the deck for the next generation. Molecular Reproduction and Development, 2014, 81, 481-481.	2.0	0
59	CHARACTERIZATION OF A NEW TISSUE-SPECIFIC MUTATION OF THE YELLOW GENE WHICH SUPPORTS TRANSVECTION. , 2001, , 195-202.		0