
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2047592/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Syrian hamsters as a small animal model for SARS-CoV-2 infection and countermeasure development. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 16587-16595.	7.1	912
2	Novel bis-Tetrahydrofuranylurethane-Containing Nonpeptidic Protease Inhibitor (PI) UIC-94017 (TMC114) with Potent Activity against Multi-PI-Resistant Human Immunodeficiency Virus In Vitro. Antimicrobial Agents and Chemotherapy, 2003, 47, 3123-3129.	3.2	355
3	Efficacy of Antibodies and Antiviral Drugs against Covid-19 Omicron Variant. New England Journal of Medicine, 2022, 386, 995-998.	27.0	301
4	Acid-stable 2'-fluoro purine dideoxynucleosides as active agents against HIV. Journal of Medicinal Chemistry, 1990, 33, 978-985.	6.4	224
5	Characterization and antiviral susceptibility of SARS-CoV-2 Omicron BA.2. Nature, 2022, 607, 119-127.	27.8	174
6	HIV-1 Reverse Transcriptase Can Discriminate between Two Conformationally Locked Carbocyclic AZT Triphosphate Analogues. Journal of the American Chemical Society, 1998, 120, 2780-2789.	13.7	156
7	Amino Acid Substitutions in Gag Protein at Non-cleavage Sites Are Indispensable for the Development of a High Multitude of HIV-1 Resistance against Protease Inhibitors. Journal of Biological Chemistry, 2002, 277, 5952-5961.	3.4	143
8	4′-Ethynyl Nucleoside Analogs: Potent Inhibitors of Multidrug-Resistant Human Immunodeficiency Virus Variants In Vitro. Antimicrobial Agents and Chemotherapy, 2001, 45, 1539-1546.	3.2	137
9	Potent Inhibition of HIV-1 Replication by Novel Non-peptidyl Small Molecule Inhibitors of Protease Dimerization. Journal of Biological Chemistry, 2007, 282, 28709-28720.	3.4	137
10	A Potent Human Immunodeficiency Virus Type 1 Protease Inhibitor, UIC-94003 (TMC-126), and Selection of a Novel (A28S) Mutation in the Protease Active Site. Journal of Virology, 2002, 76, 1349-1358.	3.4	134
11	Antibody titers against SARS-CoV-2 decline, but do not disappear for several months. EClinicalMedicine, 2021, 32, 100734.	7.1	134
12	A small moleculeÂcompound with an indole moiety inhibits the main protease of SARS-CoV-2 and blocks virus replication. Nature Communications, 2021, 12, 668.	12.8	126
13	Mechanism of Inhibition of HIV-1 Reverse Transcriptase by 4′-Ethynyl-2-fluoro-2′-deoxyadenosine Triphosphate, a Translocation-defective Reverse Transcriptase Inhibitor. Journal of Biological Chemistry, 2009, 284, 35681-35691.	3.4	117
14	2′-Deoxy-4′-C-ethynyl-2-halo-adenosines active against drug-resistant human immunodeficiency virus type 1 variants. International Journal of Biochemistry and Cell Biology, 2008, 40, 2410-2420.	2.8	114
15	Activity against Human Immunodeficiency Virus Type 1, Intracellular Metabolism, and Effects on Human DNA Polymerases of 4′-Ethynyl-2-Fluoro-2′-Deoxyadenosine. Antimicrobial Agents and Chemotherapy, 2007, 51, 2701-2708.	3.2	96
16	<i>In Vitro</i> Selection of Highly Darunavir-Resistant and Replication-Competent HIV-1 Variants by Using a Mixture of Clinical HIV-1 Isolates Resistant to Multiple Conventional Protease Inhibitors. Journal of Virology, 2010, 84, 11961-11969.	3.4	85
17	4′-Ethynyl-2-fluoro-2′-deoxyadenosine (EFdA) Inhibits HIV-1 Reverse Transcriptase with Multiple Mechanisms. Journal of Biological Chemistry, 2014, 289, 24533-24548.	3.4	80
18	Structural basis of HIV inhibition by translocation-defective RT inhibitor 4′-ethynyl-2-fluoro-2′-deoxyadenosine (EFdA). Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 9274-9279.	7.1	73

#	Article	IF	CITATIONS
19	Dimerization of HIV-1 protease occurs through two steps relating to the mechanism of protease dimerization inhibition by darunavir. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 12234-12239.	7.1	70
20	Inhibition of duck hepatitis B virus replication by 2′,3′-dideoxycytidine. Gastroenterology, 1989, 97, 1275-1280.	1.3	67
21	A Novel Bis-Tetrahydrofuranylurethane-Containing Nonpeptidic Protease Inhibitor (PI), GRL-98065, Is Potent against Multiple-PI-Resistant Human Immunodeficiency Virus In Vitro. Antimicrobial Agents and Chemotherapy, 2007, 51, 2143-2155.	3.2	66
22	Design and Development of Highly Potent HIV-1 Protease Inhibitors with a Crown-Like Oxotricyclic Core as the P2-Ligand To Combat Multidrug-Resistant HIV Variants. Journal of Medicinal Chemistry, 2017, 60, 4267-4278.	6.4	64
23	Comparative Enzymatic Study of HIV-1 Reverse Transcriptase Resistant to 2â€~,3â€~-Dideoxynucleotide Analogs Using the Single-Nucleotide Incorporation Assay. Biochemistry, 1997, 36, 1092-1099.	2.5	63
24	Characterization of a new SARS-CoV-2 variant that emerged in Brazil. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	63
25	Shikonin, dually functions as a proteasome inhibitor and a necroptosis inducer in multiple myeloma cells. International Journal of Oncology, 2015, 46, 963-972.	3.3	62
26	Potent Anti-R5 Human Immunodeficiency Virus Type 1 Effects of a CCR5 Antagonist, AK602/ONO4128/GW873140, in a Novel Human Peripheral Blood Mononuclear Cell Nonobese Diabetic-SCID, Interleukin-2 Receptor Î ³ -Chain-Knocked-Out AIDS Mouse Model. Journal of Virology, 2005, 79, 2087-2096.	3.4	59
27	Correlates of neutralizing/SARS-CoV-2-S1-binding antibody response with adverse effects and immune kinetics in BNT162b2-vaccinated individuals. Scientific Reports, 2021, 11, 22848.	3.3	57
28	Potent Activity of a Nucleoside Reverse Transcriptase Inhibitor, 4′-Ethynyl-2-Fluoro-2′-Deoxyadenosine, against Human Immunodeficiency Virus Type 1 Infection in a Model Using Human Peripheral Blood Mononuclear Cell-Transplanted NOD/SCID Janus Kinase 3 Knockout Mice. Antimicrobial Agents and Chemotherapy, 2009, 53, 3887-3893.	3.2	56
29	A novel highly quantitative and reproducible assay for the detection of anti-SARS-CoV-2 IgG and IgM antibodies. Scientific Reports, 2021, 11, 5198.	3.3	55
30	Indole Chloropyridinyl Ester-Derived SARS-CoV-2 3CLpro Inhibitors: Enzyme Inhibition, Antiviral Efficacy, Structure–Activity Relationship, and X-ray Structural Studies. Journal of Medicinal Chemistry, 2021, 64, 14702-14714.	6.4	55
31	GRL-0920, an Indole Chloropyridinyl Ester, Completely Blocks SARS-CoV-2 Infection. MBio, 2020, 11, .	4.1	52
32	Response of Simian Immunodeficiency Virus to the Novel Nucleoside Reverse Transcriptase Inhibitor 4′-Ethynyl-2-Fluoro-2′-Deoxyadenosine <i>In Vitro</i> and <i>In Vivo</i> . Antimicrobial Agents and Chemotherapy, 2012, 56, 4707-4712.	3.2	50
33	Coronavirus Disease 2019 (COVID-19) Breakthrough Infection and Post-Vaccination Neutralizing Antibodies Among Healthcare Workers in a Referral Hospital in Tokyo: A Case-Control Matching Study. Clinical Infectious Diseases, 2022, 75, e683-e691.	5.8	48
34	Human Immunodeficiency Virus Type 1 (HIV-I) Viremia Changes and Development of Drug-Related Mutations in Patients with Symptomatic HIV-I Infection Receiving Alternating or Simultaneous Zidovudine and Didanosine Therapy. Journal of Infectious Diseases, 1995, 171, 1152-1158.	4.0	47
35	Altered HIV-1 Gag Protein Interactions with Cyclophilin A (CypA) on the Acquisition of H219Q and H219P Substitutions in the CypA Binding Loop. Journal of Biological Chemistry, 2006, 281, 1241-1250.	3.4	47
36	Development of Protease Inhibitors and the Fight with Drugâ€Resistant HIVâ€1 Variants. Advances in Pharmacology, 2008, 56, 169-197.	2.0	47

#	Article	IF	CITATIONS
37	Design, Efficient Synthesis, and Antiâ€HIV Activity of 4′â€Câ€Cyano―and 4′â€Câ€Ethynylâ€2′â€deoxy Nucleosides, Nucleotides and Nucleic Acids, 2004, 23, 671-690.	Purine Nu 1.1	cleosides. 44
38	Delayed Emergence of HIV-1 Variants Resistant to 4′-Ethy Nyl-2-Fluoro-2′-Deoxyadenosine: Comparative Sequential Passage Study with Lamivudine, Tenofovir, Emtricitabine and BMS-986001. Antiviral Therapy, 2014, 19, 179-189.	1.0	44
39	A novel central nervous system-penetrating protease inhibitor overcomes human immunodeficiency virus 1 resistance with unprecedented aM to pM potency. ELife, 2017, 6, .	6.0	44
40	4′â€modified nucleoside analogs: Potent inhibitors active against entecavirâ€resistant hepatitis B virus. Hepatology, 2015, 62, 1024-1036.	7.3	43
41	Neutralization of SARS-CoV-2 with IgG from COVID-19-convalescent plasma. Scientific Reports, 2021, 11, 5563.	3.3	42
42	Loss of Protease Dimerization Inhibition Activity of Darunavir Is Associated with the Acquisition of Resistance to Darunavir by HIV-1. Journal of Virology, 2011, 85, 10079-10089.	3.4	40
43	Combination of a Latency-Reversing Agent With a Smac Mimetic Minimizes Secondary HIV-1 Infection in vitro. Frontiers in Microbiology, 2018, 9, 2022.	3.5	39
44	Sustaining containment of COVID-19: global sharing for pandemic response. Global Health & Medicine, 2020, 2, 53-55.	1.4	37
45	Design of Highly Potent, Dualâ€Acting and Centralâ€Nervousâ€Systemâ€Penetrating HIVâ€1 Protease Inhibitors with Excellent Potency against Multidrugâ€Resistant HIVâ€1 Variants. ChemMedChem, 2018, 13, 803-815.	3.2	36
46	Mechanism of Darunavir (DRV)'s High Genetic Barrier to HIV-1 Resistance: A Key V32I Substitution in Protease Rarely Occurs, but Once It Occurs, It Predisposes HIV-1 To Develop DRV Resistance. MBio, 2018, 9, .	4.1	36
47	Effects of Substitutions at the 4′ and 2 Positions on the Bioactivity of 4′-Ethynyl-2-Fluoro-2′-Deoxyadenosine. Antimicrobial Agents and Chemotherapy, 2013, 57, 6254-6264.	3.2	35
48	Comparative analysis of ER stress response into HIV protease inhibitors: Lopinavir but not darunavir induces potent ER stress response via ROS/JNK pathway. Free Radical Biology and Medicine, 2013, 65, 778-788.	2.9	32
49	P2′ Benzene Carboxylic Acid Moiety Is Associated with Decrease in Cellular Uptake: Evaluation of Novel Nonpeptidic HIV-1 Protease Inhibitors Containing P2 <i>bis</i> -Tetrahydrofuran Moiety. Antimicrobial Agents and Chemotherapy, 2013, 57, 4920-4927.	3.2	32
50	Design and Synthesis of Highly Potent HIV-1 Protease Inhibitors Containing Tricyclic Fused Ring Systems as Novel P2 Ligands: Structure–Activity Studies, Biological and X-ray Structural Analysis. Journal of Medicinal Chemistry, 2018, 61, 4561-4577.	6.4	31
51	Benzolactam-related compounds promote apoptosis of HIV-infected human cells via protein kinase C–induced HIV latency reversal. Journal of Biological Chemistry, 2019, 294, 116-129.	3.4	31
52	Insights into the Mechanism of Inhibition of CXCR4: Identification of Piperidinylethanamine Analogs as Anti-HIV-1 Inhibitors. Antimicrobial Agents and Chemotherapy, 2015, 59, 1895-1904.	3.2	28
53	Non-Cleavage Site Gag Mutations in Amprenavir-Resistant Human Immunodeficiency Virus Type 1 (HIV-1) Predispose HIV-1 to Rapid Acquisition of Amprenavir Resistance but Delay Development of Resistance to Other Protease Inhibitors. Journal of Virology, 2009, 83, 3059-3068.	3.4	27
54	Loss of the Protease Dimerization Inhibition Activity of Tipranavir (TPV) and Its Association with the Acquisition of Resistance to TPV by HIV-1. Journal of Virology, 2012, 86, 13384-13396.	3.4	26

#	Article	IF	CITATIONS
55	Structure-based design, synthesis, X-ray studies, and biological evaluation of novel HIV-1 protease inhibitors containing isophthalamide-derived P2-ligands. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 4903-4909.	2.2	26
56	Novel HIV-1 Protease Inhibitors (PIs) Containing a Bicyclic P2 Functional Moiety, Tetrahydropyrano-Tetrahydrofuran, That Are Potent against Multi-PI-Resistant HIV-1 Variants. Antimicrobial Agents and Chemotherapy, 2011, 55, 1717-1727.	3.2	25
57	GRL-0519, a Novel Oxatricyclic Ligand-Containing Nonpeptidic HIV-1 Protease Inhibitor (PI), Potently Suppresses Replication of a Wide Spectrum of Multi-PI-Resistant HIV-1 Variants <i>In Vitro</i> . Antimicrobial Agents and Chemotherapy, 2013, 57, 2036-2046.	3.2	24
58	Five-Year Follow-Up of a Phase I Study of Didanosine in Patients with Advanced Human Immunodeficiency Virus Infection. Journal of Infectious Diseases, 1995, 171, 1180-1189.	4.0	23
59	Seroprevalence of antibodies against SARS-CoV-2 in a large national hospital and affiliated facility in Tokyo, Japan. Journal of Infection, 2021, 82, e1-e3.	3.3	22
60	Novel Protease Inhibitors (PIs) Containing Macrocyclic Components and 3(<i>R</i>),3a(<i>S</i>),6a() Tj ETQqO Variants <i>In Vitro</i> . Antimicrobial Agents and Chemotherapy, 2010, 54, 3460-3470.	0 0 rgBT 3.2	Overlock 10 21
61	GRL-04810 and GRL-05010, Difluoride-Containing Nonpeptidic HIV-1 Protease Inhibitors (PIs) That Inhibit the Replication of Multi-PI-Resistant HIV-1 <i>In Vitro</i> and Possess Favorable Lipophilicity That May Allow Blood-Brain Barrier Penetration. Antimicrobial Agents and Chemotherapy, 2013, 57, 6110-6121.	3.2	21
62	Evaluation of Combinations of 4′-Ethynyl-2-Fluoro-2′-Deoxyadenosine with Clinically Used Antiretroviral Drugs. Antimicrobial Agents and Chemotherapy, 2013, 57, 4554-4558.	3.2	21
63	Design of <i>gem</i> â€Difluoroâ€ <i>bis</i> â€Tetrahydrofuran as P2 Ligand for HIVâ€1â€Protease Inhibitors to Improve Brain Penetration: Synthesis, Xâ€ray Studies, and Biological Evaluation. ChemMedChem, 2015, 10, 107-115.	3.2	20
64	The High Genetic Barrier of EFdA/MK-8591 Stems from Strong Interactions with the Active Site of Drug-Resistant HIV-1 Reverse Transcriptase. Cell Chemical Biology, 2018, 25, 1268-1278.e3.	5.2	20
65	Identification of a novel long-acting 4'-modified nucleoside reverse transcriptase inhibitor against HBV. Journal of Hepatology, 2021, 74, 1075-1086.	3.7	20
66	Structure-Based Design of Highly Potent HIV-1 Protease Inhibitors Containing New Tricyclic Ring P2-Ligands: Design, Synthesis, Biological, and X-ray Structural Studies. Journal of Medicinal Chemistry, 2020, 63, 4867-4879.	6.4	19
67	Highly Neutralizing COVID-19 Convalescent Plasmas Potently Block SARS-CoV-2 Replication and Pneumonia in Syrian Hamsters. Journal of Virology, 2022, 96, JVI0155121.	3.4	18
68	A Conserved Hydrogen-Bonding Network of P2 <i>bis</i> -Tetrahydrofuran-Containing HIV-1 Protease Inhibitors (PIs) with a Protease Active-Site Amino Acid Backbone Aids in Their Activity against PI-Resistant HIV. Antimicrobial Agents and Chemotherapy, 2014, 58, 3679-3688.	3.2	17
69	CMCdG, a Novel Nucleoside Analog with Favorable Safety Features, Exerts Potent Activity against Wild-Type and Entecavir-Resistant Hepatitis B Virus. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	17
70	Probing the molecular mechanism of action of the HIV-1 reverse transcriptase inhibitor 4′-ethynyl-2-fluoro-2′-deoxyadenosine (EFdA) using pre-steady-state kinetics. Antiviral Research, 2014, 106, 1-4.	4.1	16
71	GRL-09510, a Unique P2-Crown-Tetrahydrofuranylurethane -Containing HIV-1 Protease Inhibitor, Maintains Its Favorable Antiviral Activity against Highly-Drug-Resistant HIV-1 Variants in vitro. Scientific Reports, 2017, 7, 12235.	3.3	16
72	Potent HIVâ€1 Protease Inhibitors Containing Carboxylic and Boronic Acids: Effect on Enzyme Inhibition and Antiviral Activity and Proteinâ€Ligand Xâ€ray Structural Studies. ChemMedChem, 2019, 14, 1863-1872.	3.2	16

#	Article	IF	CITATIONS
73	Seroprevalence of SARS-CoV-2 antibodies in a national hospital and affiliated facility after the second epidemic wave of Japan. Journal of Infection, 2021, 83, 237-279.	3.3	16
74	C-5-Modified Tetrahydropyrano-Tetrahydofuran-Derived Protease Inhibitors (PIs) Exert Potent Inhibition of the Replication of HIV-1 Variants Highly Resistant to Various PIs, including Darunavir. Journal of Virology, 2016, 90, 2180-2194.	3.4	15
75	HIV-1 with HBV-associated Q151M substitution in RT becomes highly susceptible to entecavir: structural insights into HBV-RT inhibition by entecavir. Scientific Reports, 2018, 8, 1624.	3.3	15
76	Structural features in common of HBV and HIV-1 resistance against chirally-distinct nucleoside analogues entecavir and lamivudine. Scientific Reports, 2020, 10, 3021.	3.3	15
77	Fight against COVID-19 but avoid disruption of services for other communicable diseases (CDs) and noncommunicable diseases (NCDs). Global Health & Medicine, 2020, 2, 343-345.	1.4	15
78	A Modified P1 Moiety Enhances <i>In Vitro</i> Antiviral Activity against Various Multidrug-Resistant HIV-1 Variants and <i>In Vitro</i> Central Nervous System Penetration Properties of a Novel Nonpeptidic Protease Inhibitor, GRL-10413. Antimicrobial Agents and Chemotherapy, 2016, 60, 7046-7059.	3.2	14
79	Lessons from the Pseudorotational Cycle: Conformationally Rigid AZT Carbocyclic Nucleosides and Their Interaction with Reverse Transcriptase. Nucleosides & Nucleotides, 1998, 17, 1881-1884.	0.5	13
80	Design of HIV-1 Protease Inhibitors with Amino-bis-tetrahydrofuran Derivatives as P2-Ligands to Enhance Backbone-Binding Interactions: Synthesis, Biological Evaluation, and Protein–Ligand X-ray Studies. Journal of Medicinal Chemistry, 2015, 58, 6994-7006.	6.4	13
81	Single atom changes in newly synthesized HIV protease inhibitors reveal structural basis for extreme affinity, high genetic barrier, and adaptation to the HIV protease plasticity. Scientific Reports, 2020, 10, 10664.	3.3	13
82	Regulation of the Dimerization and Activity of SARS-CoV-2 Main Protease through Reversible Glutathionylation of Cysteine 300. MBio, 2021, 12, e0209421.	4.1	13
83	Halogen Bond Interactions of Novel HIV-1 Protease Inhibitors (PI) (GRL-001-15 and GRL-003-15) with the Flap of Protease Are Critical for Their Potent Activity against Wild-Type HIV-1 and Multi-PI-Resistant Variants. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	12
84	Novel Protease Inhibitors Containing C-5-Modified <i>bis</i> -Tetrahydrofuranylurethane and Aminobenzothiazole as P2 and P2′ Ligands That Exert Potent Antiviral Activity against Highly Multidrug-Resistant HIV-1 with a High Genetic Barrier against the Emergence of Drug Resistance. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	11
85	Emergence of human immunodeficiency virus type 1 variants containing the Q151M complex in children receiving long-term antiretroviral chemotherapy. Antiviral Research, 2007, 75, 159-166.	4.1	10
86	A Novel Tricyclic Ligand-Containing Nonpeptidic HIV-1 Protease Inhibitor, GRL-0739, Effectively Inhibits the Replication of Multidrug-Resistant HIV-1 Variants and Has a Desirable Central Nervous System Penetration Property <i>In Vitro</i> . Antimicrobial Agents and Chemotherapy, 2015, 59, 2625-2635.	3.2	10
87	Design, synthesis, biological evaluation and X-ray structural studies of HIV-1 protease inhibitors containing substituted fused-tetrahydropyranyl tetrahydrofuran as P2-ligands. Organic and Biomolecular Chemistry, 2015, 13, 11607-11621.	2.8	10
88	Potent HIV-1 protease inhibitors incorporating squaramide-derived P2 ligands: Design, synthesis, and biological evaluation. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 2565-2570.	2.2	10
89	Novel Central Nervous System (CNS)-Targeting Protease Inhibitors for Drug-Resistant HIV Infection and HIV-Associated CNS Complications. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	9
90	Asymptomatic COVID-19 re-infection in a Japanese male by elevated half-maximal inhibitory concentration (IC50) of neutralizing antibodies. Journal of Infection and Chemotherapy, 2021, 27, 1063-1067.	1.7	9

#	Article	IF	CITATIONS
91	Chloropyridinyl Esters of Nonsteroidal Anti-Inflammatory Agents and Related Derivatives as Potent SARS-CoV-2 3CL Protease Inhibitors. Molecules, 2021, 26, 5782.	3.8	9
92	Production of TRAIL by Multiple Myeloma Cells: a Potential Prediction Marker for Skeletal-Related Events. Blood, 2010, 116, 2975-2975.	1.4	9
93	A widely distributed HIV-1 provirus elimination assay to evaluate latency-reversing agents inÂvitro. Cell Reports Methods, 2021, 1, 100122.	2.9	9
94	GRL-079, a Novel HIV-1 Protease Inhibitor, Is Extremely Potent against Multidrug-Resistant HIV-1 Variants and Has a High Genetic Barrier against the Emergence of Resistant Variants. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	8
95	Active-site deformation in the structure of HIV-1 RT with HBV-associated septuple amino acid substitutions rationalizes the differential susceptibility of HIV-1 and HBV against 4Ê1-modified nucleoside RT inhibitors. Biochemical and Biophysical Research Communications, 2019, 509, 943-948.	2.1	8
96	Current Status of the Development of HIV Protease Inhibitors and Their Clinical Potential. BioDrugs, 1995, 4, 451-461.	0.7	7
97	Synthesis, Anti-HBV, and Anti-HIV Activities of 3′-Halogenated Bis(hydroxymethyl)-cyclopentenyladenines. ACS Medicinal Chemistry Letters, 2018, 9, 1211-1216.	2.8	7
98	7-Deaza-7-fluoro modification confers on 4′-cyano-nucleosides potent activity against entecavir/adefovir-resistant HBV variants and favorable safety. Antiviral Research, 2020, 176, 104744.	4.1	7
99	Characterization of Human Immunodeficiency Virus Type 1 Strains Resistant to the Non-Nucleoside Reverse Transcriptase Inhibitor RD4–2217. Antiviral Chemistry and Chemotherapy, 1999, 10, 315-320.	0.6	6
100	Synthesis of 4′â€Substituted Purine 2′â€Deoxynucleosides and Their Activity against Human Immunodeficiency Virus Type 1 and Hepatitis B Virus. ChemistrySelect, 2018, 3, 3313-3317.	1.5	6
101	Design, Synthesis, and X-ray Studies of Potent HIV-1 Protease Inhibitors with P2-Carboxamide Functionalities. ACS Medicinal Chemistry Letters, 2020, 11, 1965-1972.	2.8	6
102	Development of Inhibitors of Reverse Transcriptase and Protease as Therapeutics Against HIV Infection. Journal of Enzyme Inhibition and Medicinal Chemistry, 1992, 6, 1-8.	0.5	5
103	Mutations in the HIV Type 1 Integrase of Patients Receiving Long-Term Dideoxynucleoside Therapy Do Not Confer Resistance to Zidovudine. AIDS Research and Human Retroviruses, 2000, 16, 1417-1422.	1.1	5
104	A novel HIV-1 protease inhibitor, GRL-044, has potent activity against various HIV-1s with an extremely high genetic barrier to the emergence of HIV-1 drug resistance. Global Health & Medicine, 2019, 1, 36-48.	1.4	5
105	Fluorine Modifications Contribute to Potent Antiviral Activity against Highly Drug-Resistant HIV-1 and Favorable Blood-Brain Barrier Penetration Property of Novel Central Nervous System-Targeting HIV-1 Protease Inhibitors <i>In Vitro</i> . Antimicrobial Agents and Chemotherapy, 2022, 66, AAC0171521.	3.2	5
106	EFdA, a Reverse Transcriptase Inhibitor, Potently Blocks HIV-1 Ex Vivo Infection of Langerhans Cells within Epithelium. Journal of Investigative Dermatology, 2014, 134, 1158-1161.	0.7	4
107	Design, synthesis, and X-ray studies of potent HIV-1 protease inhibitors incorporating aminothiochromane and aminotetrahydronaphthalene carboxamide derivatives as the P2 ligands. European Journal of Medicinal Chemistry, 2018, 160, 171-182.	5.5	4
108	Safety of convalescent plasma therapy for COVID-19 patients and analysis of viral kinetics: a single-center, open-label, single-arm, interventional study in Japan. GHM Open, 2022, 2, 38-43.	0.6	4

HIROAKI MITSUYA

#	Article	IF	CITATIONS
109	Successful use of casirivimab/imdevimab anti-spike monoclonal antibodies to enhance neutralizing antibodies in a woman on anti-CD20 treatment with refractory COVID-19. Journal of Infection and Chemotherapy, 2022, 28, 991-994.	1.7	4
110	A Multi-Center, Open-Label, Randomized Controlled Trial to Evaluate the Efficacy of Convalescent Plasma Therapy for Coronavirus Disease 2019: A Trial Protocol (COVIPLA-RCT). Life, 2022, 12, 856.	2.4	4
111	An Association Study of HLA with the Kinetics of SARS-CoV-2 Spike Specific IgG Antibody Responses to BNT162b2 mRNA Vaccine. Vaccines, 2022, 10, 563.	4.4	3
112	Phosphodiester Amidates of Unsaturated Nucleoside Analogues as Anti-HIV Agents. Nucleosides & Nucleotides, 1997, 16, 1341-1345.	0.5	2
113	Development and validation of a cell-based assay system to assess human immunodeficiency virus type 1 integrase multimerization. Journal of Virological Methods, 2016, 236, 196-206.	2.1	2
114	Synthesis and evaluation of the anti-hepatitis B virus activity of 4â€2-Azido-thymidine analogs and 4â€2-Azido-2â€2-deoxy-5-methylcytidine analogs: structural insights for the development of a novel anti-HBV agent. Nucleosides, Nucleotides and Nucleic Acids, 2020, 39, 518-529.	1.1	2
115	Consistency of the results of rapid serological tests for SARS-CoV-2 among healthcare workers in a large national hospital in Tokyo, Japan. Global Health & Medicine, 2021, 3, 90-94.	1.4	2
116	Lactate Is a Crucial Energy Source For Multiple Myeloma (MM) Cells In Bone Marrow Microenvironment. Blood, 2013, 122, 3109-3109.	1.4	2
117	Identification of a Key Target Sequence To Block Human Immunodeficiency Virus Type 1 Replication within thegag-pol Transframe Domain. Journal of Virology, 2000, 74, 4621-4633.	3.4	2
118	Design, Synthesis and Xâ€Ray Structural Studies of Potent HIVâ€1 Protease Inhibitors Containing Câ€4 Substituted Tricyclic Hexahydroâ€Furofuran Derivatives as P2 Ligands. ChemMedChem, 2022, 17, .	3.2	2
119	Advances in Oncology in US and Japan: Focusing on Cancer and Infectious Diseases. World Journal of Oncology, 2021, 12, 183-194.	1.5	2
120	Early phase dynamics of traceable mCherry fluorescent protein-carrying HIV-1 infection in human peripheral blood mononuclear cells-transplanted NOD/SCID/Jak3 -/- mice. Antiviral Research, 2017, 144, 83-92.	4.1	1
121	Effect of streptococcal preparation, OK-432 on cultured spontaneous cell mediated cytotoxicity (CSCMC) and Ig production <i>in vitro</i> . Japanese Journal of Clinical Immunology, 1981, 4, 312-321.	0.0	1
122	Raltegravir blocks the infectivity of red-fluorescent-protein (mCherry)-labeled HIV-1JR-FL in the setting of post-exposure prophylaxis in NOD/SCID/Jak3â^'/â^' mice transplanted with human PBMCs. Antiviral Research, 2018, 149, 78-88.	4.1	0
123	Pharmacokinetics of 4′-cyano-2′-deoxyguanosine, a novel nucleoside analog inhibitor of the resistant hepatitis B virus, in a rat model of chronic kidney disease. Journal of Infection and Chemotherapy, 2021, 27, 702-706.	1.7	0
124	Appearance of Stress-Inducible Membrane Proteins ULBP on Blood Cells of Patients with PNH, Aplastic Anemia, and MDS: Possible Implication of ULBP in Immune-Mediated Marrow Injury Blood, 2005, 106, 1041-1041.	1.4	0
125	Induction of Autophagy to Myeloma Cells by Thalidomide and Clarithromycin Blood, 2005, 106, 5134-5134.	1.4	0
126	Kigamicin Induces Necrosis to Human Myeloma Cells by Disruption of Cell Cycle Regulation Blood, 2006, 108, 5017-5017.	1.4	0

#	Article	IF	CITATIONS
127	Conditionally Expressed PU.1 Transactivates TRAIL Gene and Induces Apoptosis in Myeloma Cell Lines Blood, 2008, 112, 1676-1676.	1.4	0
128	Characteristics of Chronic-Phase CML Patients Having Durable Cytogenetic Response to Low-Dose Imatinib. Blood, 2008, 112, 3218-3218.	1.4	0
129	CD125-Expressing Myeloma: A Subgroup of Multiple Myeloma (MM) with Immature Phenotype, Endoplasmic Reticulum Stress Response and Low Sensitivity to Bortezomib. Blood, 2010, 116, 616-616.	1.4	0
130	Proliferative responsiveness of B cells in primary immunodeficiency. Japanese Journal of Clinical Immunology, 1983, 6, 102-109.	0.0	0
131	A case of COVID-19 reinfection in a hemodialysis patient: the role of antibody in SARS-CoV-2 infection. CEN Case Reports, 2022, , 1.	0.9	0
132	Antibody responses after two doses of SARS-CoV-2 mRNA-1273 vaccine in an individual with history of COVID-19 re-infection. International Journal of Infectious Diseases, 2022, 119, 18-20.	3.3	0
133	Neutralising activity and antibody titre in 10 patients with breakthrough infections of the SARS-CoV-2 Omicron variant in Japan. Journal of Infection and Chemotherapy, 2022, , .	1.7	Ο