Andrew Iwaniuk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2047097/publications.pdf

Version: 2024-02-01

123 papers 5,225 citations

71102 41 h-index 102487 66 g-index

129 all docs 129 does citations

times ranked

129

3870 citing authors

#	Article	IF	Citations
1	Living in the city: can anyone become an ?urban exploiter'?. Journal of Biogeography, 2007, 34, 638-651.	3.0	411
2	On the origin of skilled forelimb movements. Trends in Neurosciences, 2000, 23, 372-376.	8.6	204
3	Can endocranial volume be used as an estimate of brain size in birds?. Canadian Journal of Zoology, 2002, 80, 16-23.	1.0	190
4	The Evolution of Cerebrotypes in Birds. Brain, Behavior and Evolution, 2005, 65, 215-230.	1.7	181
5	The Influence of Phylogeny on the Social Behaviour of Macaques (Primates: Cercopithecidae,) Tj ETQq1 1 0.7843	14 rgBT /(1.F	Overlock 10
6	Developmental differences are correlated with relative brain size in birds: a comparative analysis. Canadian Journal of Zoology, 2003, 81, 1913-1928.	1.0	179
7	Interspecific Allometry of the Brain and Brain Regions in Parrots (Psittaciformes): Comparisons with Other Birds and Primates. Brain, Behavior and Evolution, 2005, 65, 40-59.	1.7	145
8	Environmental variation and the evolution of large brains in birds. Nature Communications, 2016, 7, 13971.	12.8	118
9	Breakdown of brain–body allometry and the encephalization of birds and mammals. Nature Ecology and Evolution, 2018, 2, 1492-1500.	7.8	110
10	Adult-Adult Play in Primates: Comparative Analyses of its Origin, Distribution and Evolution. Ethology, 2000, 106, 1083-1104.	1,1	90
11	A mosaic pattern characterizes the evolution of the avian brain. Proceedings of the Royal Society B: Biological Sciences, 2004, 271, S148-51.	2.6	86
12	Do big-brained animals play more? Comparative analyses of play and relative brain size in mammals Journal of Comparative Psychology (Washington, D C: 1983), 2001, 115, 29-41.	0.5	85
13	Diversity in olfactory bulb size in birds reflects allometry, ecology, and phylogeny. Frontiers in Neuroanatomy, 2015, 9, 102.	1.7	85
14	The optic tectum of birds: Mapping our way to understanding visual processing Canadian Journal of Experimental Psychology, 2009, 63, 328-338.	0.8	84
15	The evolution of mammalian brain size. Science Advances, 2021, 7, .	10.3	84
16	Evolutionary Divergence in Brain Size between Migratory and Resident Birds. PLoS ONE, 2010, 5, e9617.	2.5	82
17	The roles of phylogeny and sociality in the evolution of social play in muroid rodents. Animal Behaviour, 1999, 58, 361-373.	1.9	78
18	Relative Wulst volume is correlated with orbit orientation and binocular visual field in birds. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2008, 194, 267-282.	1.6	77

#	Article	IF	CITATIONS
19	Avian Cerebellar Floccular Fossa Size Is Not a Proxy for Flying Ability in Birds. PLoS ONE, 2013, 8, e67176.	2.5	76
20	The effects of environmental exposure to DDT on the brain of a songbird: Changes in structures associated with mating and song. Behavioural Brain Research, 2006, 173, 1-10.	2.2	75
21	Is digital dexterity really related to corticospinal projections?: a re-analysis of the Heffner and Masterton data set using modern comparative statistics. Behavioural Brain Research, 1999, 101, 173-187.	2.2	72
22	Big brains stabilize populations and facilitate colonization of variable habitats in birds. Nature Ecology and Evolution, 2017, 1, 1706-1715.	7.8	66
23	The relationship between forelimb morphology and behaviour in North American carnivores (Carnivora). Canadian Journal of Zoology, 1999, 77, 1064-1074.	1.0	65
24	Neural specialization for hovering in hummingbirds: Hypertrophy of the pretectal nucleus lentiformis mesencephali. Journal of Comparative Neurology, 2007, 500, 211-221.	1.6	64
25	The Problem of Adult Play Fighting: A Comparative Analysis of Play and Courtship in Primates. Ethology, 1999, 105, 783-806.	1.1	63
26	Comparative analyses of the role of postnatal development on the expression of play fighting. Developmental Psychobiology, 2000, 36, 136-147.	1.6	61
27	Predictable evolution towards larger brains in birds colonizing oceanic islands. Nature Communications, 2018, 9, 2820.	12.8	61
28	The Anatomy of the bill Tip of Kiwi and Associated Somatosensory Regions of the Brain: Comparisons with Shorebirds. PLoS ONE, 2013, 8, e80036.	2.5	59
29	Is Cooperative Breeding Associated With Bigger Brains? A Comparative Test in the Corvida (Passeriformes). Ethology, 2004, 110, 203-220.	1.1	58
30	Comparative Morphology of the Avian Cerebellum: I. Degree of Foliation. Brain, Behavior and Evolution, 2006, 68, 45-62.	1.7	58
31	Purkinje cell compartmentation as revealed by Zebrin II expression in the cerebellar cortex of pigeons (<i>Columba livia</i>). Journal of Comparative Neurology, 2007, 501, 619-630.	1.6	57
32	Eye Shape and Retinal Topography in Owls (Aves: Strigiformes). Brain, Behavior and Evolution, 2012, 79, 218-236.	1.7	57
33	The evolution of stereopsis and the Wulst in caprimulgiform birds: a comparative analysis. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2006, 192, 1313-1326.	1.6	56
34	Comparative Morphology of the Avian Cerebellum: II. Size of Folia. Brain, Behavior and Evolution, 2007, 69, 196-219.	1.7	53
35	The relative importance of body size, phylogeny, locomotion, and diet in the evolution of forelimb dexterity in fissiped carnivores (Carnivora). Canadian Journal of Zoology, 2000, 78, 1110-1125.	1.0	49
36	The comparative approach and brain–behaviour relationships: A tool for understanding tool use Canadian Journal of Experimental Psychology, 2009, 63, 150-159.	0.8	49

#	Article	IF	CITATIONS
37	Parrots have evolved a primate-like telencephalic-midbrain-cerebellar circuit. Scientific Reports, 2018, 8, 9960.	3.3	49
38	Ecomorphology of eye shape and retinal topography in waterfowl (Aves: Anseriformes: Anatidae) with different foraging modes. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2013, 199, 385-402.	1.6	48
39	The Independent Evolution of the Enlargement of the Principal Sensory Nucleus of the Trigeminal Nerve in Three Different Groups of Birds. Brain, Behavior and Evolution, 2009, 74, 280-294.	1.7	45
40	A Comparative Analysis of Relative Brain Size in Waterfowl (Anseriformes). Brain, Behavior and Evolution, 2001, 57, 87-97.	1.7	44
41	Echolocation, vocal learning, auditory localization and the relative size of the avian auditory midbrain nucleus (MLd). Behavioural Brain Research, 2006, 167, 305-317.	2.2	44
42	Integrating brain, behavior, and phylogeny to understand the evolution of sensory systems in birds. Frontiers in Neuroscience, 2015, 9, 281.	2.8	44
43	Brain Size Is Not Correlated with Forelimb Dexterity in Fissiped Carnivores (Carnivora): A Comparative Test of the Principle of Proper Mass. Brain, Behavior and Evolution, 1999, 54, 167-180.	1.7	43
44	How skilled are the skilled limb movements of the raccoon (Procyon lotor)?. Behavioural Brain Research, 1999, 99, 35-44.	2.2	43
45	Seasonal and sex differences in the hippocampus of a wild rodent. Behavioural Brain Research, 2013, 236, 131-138.	2.2	42
46	Temporal and Spectral Analyses Reveal Individual Variation in a Non-Vocal Acoustic Display: The Drumming Display of the Ruffed Grouse (Bonasa umbellus, L.). Ethology, 2012, 118, 292-301.	1.1	40
47	Comparison of eye morphology and retinal topography in two species of new world vultures (Aves:) Tj ETQq1 1 C	.784314 r 1.4	gBT/Overloc
48	Anatomical evidence for scent guided foraging in the turkey vulture. Scientific Reports, 2017, 7, 17408.	3.3	36
49	Optic Foramen Morphology and Activity Pattern in Birds. Anatomical Record, 2009, 292, 1827-1845.	1.4	35
50	Interspecifc variation in eye shape and retinal topography in seven species of galliform bird (Aves:) Tj ETQq0 0 0 r Behavioral Physiology, 2012, 198, 717-731.	gBT /Overl 1.6	ock 10 Tf 50 35
51	NSF workshop report: Discovering general principles of nervous system organization by comparing brain maps across species. Journal of Comparative Neurology, 2014, 522, 1445-1453.	1.6	35
52	Compartmentation of the cerebellar cortex of humming birds (Aves: Trochilidae) revealed by the expression of zebrin II and phospholipase \hat{Cl}^24 . Journal of Chemical Neuroanatomy, 2009, 37, 55-63.	2.1	34
53	Mosaic and Concerted Evolution in the Visual System of Birds. PLoS ONE, 2014, 9, e90102.	2.5	33
54	A comparative test of the correlated evolution of flightlessness and relative brain size in birds. Journal of Zoology, 2004, 263, 317-327.	1.7	32

#	Article	IF	CITATIONS
55	The Comparative Morphology of the Cerebellum in Caprimulgiform Birds: Evolutionary and Functional Implications. Brain, Behavior and Evolution, 2006, 67, 53-68.	1.7	32
56	Visual-Cerebellar Pathways and Their Roles in the Control of Avian Flight. Frontiers in Neuroscience, 2018, 12, 223.	2.8	32
57	Brain system size and adult–adult play in primates: a comparative analysis of the roles of the non-visual neocortex and the amygdala. Behavioural Brain Research, 2002, 134, 31-39.	2.2	31
58	CAPTIVE BREEDING REDUCES BRAIN VOLUME IN WATERFOWL (ANSERIFORMES). Condor, 2008, 110, 276-284.	1.6	31
59	Anatomical Specializations for Nocturnality in a Critically Endangered Parrot, the Kakapo (Strigops) Tj ETQq1 1 0.	784314 rg 2.5	gBJ ₁ /Overloc
60	Allometric Scaling of the Tectofugal Pathway in Birds. Brain, Behavior and Evolution, 2010, 75, 122-137.	1.7	30
61	Hummingbirds have a greatly enlarged hippocampal formation. Biology Letters, 2012, 8, 657-659.	2.3	30
62	Interspecific variation in sexual dimorphism in brain size in Nearctic ground squirrels (<i>Spermophilus</i>). Canadian Journal of Zoology, 2001, 79, 759-765.	1.0	28
63	Reaching, grasping and manipulation of food objects by two tree kangaroo species, Dendrolagus lumholtzi and Dendrolagus matschiei. Australian Journal of Zoology, 1998, 46, 235.	1.0	27
64	Anatomical Specializations for Enhanced Olfactory Sensitivity in Kiwi, <i>Apteryx mantelli</i> . Brain, Behavior and Evolution, 2014, 84, 214-226.	1.7	27
65	Endocast structures are reliable proxies for the sizes of corresponding regions of the brain in extant birds. Journal of Anatomy, 2020, 237, 1162-1176.	1.5	27
66	Relative Size of Auditory Pathways in Symmetrically and Asymmetrically Eared Owls. Brain, Behavior and Evolution, 2011, 78, 286-301.	1.7	25
67	Differential projections from the vestibular nuclei to the flocculus and uvulaâ€nodulus in pigeons (<i>Columba livia</i>). Journal of Comparative Neurology, 2008, 508, 402-417.	1.6	21
68	Expression of calcium-binding proteins in cerebellar- and inferior olivary-projecting neurons in the nucleus lentiformis mesencephali of pigeons. Visual Neuroscience, 2009, 26, 341-347.	1.0	19
69	Laminar segregation of GABAergic neurons in the avian nucleus isthmi pars magnocellularis: A retrograde tracer and comparative study. Journal of Comparative Neurology, 2013, 521, 1727-1742.	1.6	19
70	Comparative Study of Visual Pathways in Owls (Aves: Strigiformes). Brain, Behavior and Evolution, 2013, 81, 27-39.	1.7	19
71	Zebrin II Is Expressed in Sagittal Stripes in the Cerebellum of Dragon Lizards (Ctenophorus sp.). Brain, Behavior and Evolution, 2016, 88, 177-186.	1.7	19
72	Eye Morphology and Retinal Topography in Hummingbirds (Trochilidae: Aves). Brain, Behavior and Evolution, 2015, 86, 176-190.	1.7	18

#	Article	IF	CITATIONS
73	Landscape effects on the contemporary genetic structure of Ruffed Grouse (<i>Bonasa umbellus</i> populations. Ecology and Evolution, 2019, 9, 5572-5592.	1.9	18
74	The relationships between brain regions and forelimb dexterity in marsupials (Marsupialia): a comparative test of the principle of proper mass. Australian Journal of Zoology, 2000, 48, 99.	1.0	17
75	Sexual selection on brain size in shorebirds (<scp>C</scp> haradriiformes). Journal of Evolutionary Biology, 2013, 26, 878-888.	1.7	17
76	The effects of season and sex on dentate gyrus size and neurogenesis in a wild rodent, Richardson's ground squirrel (Urocitellus richardsonii). Neuroscience, 2014, 272, 240-251.	2.3	16
77	A quantitative morphological analysis of the inner ear of galliform birds. Hearing Research, 2013, 304, 111-127.	2.0	15
78	Brain Size and Morphology of the Brood-Parasitic and Cerophagous Honeyguides (Aves: Piciformes). Brain, Behavior and Evolution, 2013, 81, 170-186.	1.7	15
79	Zebrin II / Aldolase C Expression in the Cerebellum of the Western Diamondback Rattlesnake (Crotalus) Tj ETQq1	l 0.78431 2.5	4 rgBT /Ove
80	Zebrin II Expression in the Cerebellum of a Paleognathous Bird, the Chilean Tinamou <i>(Nothoprocta perdicaria)</i> . Brain, Behavior and Evolution, 2015, 85, 94-106.	1.7	15
81	Comparison of estimates of neuronal number obtained using the isotropic fractionator method and unbiased stereology in day old chicks (Gallus domesticus). Journal of Neuroscience Methods, 2017, 287, 39-46.	2.5	15
82	Functional Implications of Species Differences in the Size and Morphology of the Isthmo Optic Nucleus (ION) in Birds. PLoS ONE, 2012, 7, e37816.	2.5	14
83	Projections of the nucleus of the basal optic root in pigeons (Columba livia): A comparison of the morphology and distribution of neurons with different efferent projections. Visual Neuroscience, 2007, 24, 691-707.	1.0	13
84	Distribution of zebrinâ€immunoreactive Purkinje cell terminals in the cerebellar and vestibular nuclei of birds. Journal of Comparative Neurology, 2012, 520, 1532-1546.	1.6	13
85	Comparative Brain Collections Are an Indispensable Resource for Evolutionary Neurobiology. Brain, Behavior and Evolution, 2010, 76, 87-88.	1.7	12
86	Social status, breeding state, and GnRH soma size in convict cichlids (Cryptoheros nigrofasciatus). Behavioural Brain Research, 2013, 237, 318-324.	2.2	12
87	Coevolution of relative brain size and life expectancy in parrots. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, 20212397.	2.6	12
88	Morphometrics of the eyes and orbits of the nocturnal Swallow-tailed Gull (Creagrus furcatus). Canadian Journal of Zoology, 2010, 88, 855-865.	1.0	11
89	Heterogeneity of parvalbumin expression in the avian cerebellar cortex and comparisons with zebrin II. Neuroscience, 2011, 185, 73-84.	2.3	11
90	Aromatase expression in the brain of the ruffed grouse (Bonasa umbellus) and comparisons with other galliform birds (Aves, Galliformes). Journal of Chemical Neuroanatomy, 2013, 47, 15-27.	2.1	11

#	Article	IF	Citations
91	Sensory systems in birds: What we have learned from studying sensory specialists. Journal of Comparative Neurology, 2020, 528, 2902-2918.	1.6	11
92	The endocast of the Night Parrot (Pezoporus occidentalis) reveals insights into its sensory ecology and the evolution of nocturnality in birds. Scientific Reports, 2020, 10, 9258.	3.3	11
93	Are long digits correlated with high forepaw dexterity? A comparative test in terrestrial carnivores (Carnivora). Canadian Journal of Zoology, 2001, 79, 900-906.	1.0	10
94	Interspecific variation in relative brain size is not correlated with intensity of sexual selection in waterfowl (Anseriformes). Australian Journal of Zoology, 2008, 56, 311.	1.0	10
95	Relative brain size in Australian birds. Emu, 2014, , .	0.6	10
96	Immunohistochemical localization of cocaine―and amphetamine―egulated transcript peptide (CARTp) in the brain of the pigeon (Columba livia) and zebra finch (Taeniopygia guttata). Journal of Comparative Neurology, 2016, 524, 3747-3773.	1.6	10
97	Expression of calcium-binding proteins in pathways from the nucleus of the basal optic root to the cerebellum in pigeons. Visual Neuroscience, 2008, 25, 701-707.	1.0	8
98	Allometric Scaling Rules of the Cerebellum in Galliform Birds. Brain, Behavior and Evolution, 2020, 95, 78-92.	1.7	8
99	Heterogeneity of calretinin expression in the avian cerebellar cortex of pigeons and relationship with zebrin II. Journal of Chemical Neuroanatomy, 2013, 52, 95-103.	2.1	7
100	A unique cellular scaling rule in the avian auditory system. Brain Structure and Function, 2016, 221, 2675-2693.	2.3	7
101	A quantitative analysis of cerebellar anatomy in birds. Brain Structure and Function, 2021, 226, 2561-2583.	2.3	7
102	The cerebellar anatomy of red junglefowl and white leghorn chickens: insights into the effects of domestication on the cerebellum. Royal Society Open Science, 2021, 8, 211002.	2.4	7
103	The importance of scientific collecting and natural history museums for comparative neuroanatomy. Annals of the New York Academy of Sciences, 2011, 1225, E1-19.	3.8	6
104	Pattern in Behavior. Advances in the Study of Behavior, 2014, 46, 127-189.	1.6	6
105	Seasonal Variation in Forebrain Region Sizes in Male Ruffed Grouse <i>(Bonasa) Tj ETQq1 1 0.7843</i>	14.rgBT/C	Dverlock 10
106	The size of non-hippocampal brain regions varies by season and sex in Richardson's ground squirrel. Neuroscience, 2015, 289, 194-206.	2.3	6
107	The Evolution of Cognitive Brains in Non-mammals. , 2017, , 101-124.		6
108	Behavioural responses of male ruffed grouse (<i>Bonasa umbellus</i> , L.) to playbacks of drumming displays. Ethology, 2018, 124, 161-169.	1,1	6

#	ARTICLE	IF	CITATIONS
109	Courtship display speed varies daily and with body size in the Ruffed Grouse (<i>Bonasa umbellus</i>). Ethology, 2020, 126, 528-539.	1.1	6
110	Comparison of vehicle mortality following <i>in ovo </i> exposure of Japanese quail (<i>Coturnix) Tj ETQq0 0 0 rgB e1224022.</i>	T /Overloci 1.1	k 10 Tf 50 7 5
111	Relative Brain Size Is Not Correlated with Display Complexity in Manakins: A Reanalysis of Lindsay et al. (2015). Brain, Behavior and Evolution, 2016, 87, 223-226.	1.7	4
112	Uptake of radiolabeled 3,3′,4,4′â€ŧetrachlorobiphenyl into Japanese quail egg compartments and embryo following air cell and albumen injection. Environmental Toxicology and Chemistry, 2018, 37, 126-135.	4.3	4
113	Selection for Divergent Reproductive Investment Affects Neuron Size and Foliation in the Cerebellum. Brain, Behavior and Evolution, 2020, 95, 69-77.	1.7	3
114	The remarkable, recently extinct "moleâ€duck―Talpanas lippa (Aves: Anseriformes) from Kauai, Hawaii: behavioral implications of its neuroanatomy and skull morphology. FASEB Journal, 2017, 31, 251.6.	0.5	3
115	Not like night and day: the nocturnal letter-winged kite does not differ from diurnal congeners in orbit or endocast morphology. Royal Society Open Science, 2022, 9, .	2.4	3
116	The spandrel may be related to culture not brain function. Behavioral and Brain Sciences, 2001, 24, 288-288.	0.7	1
117	Reply to: Comparisons of static brain–body allometries across vertebrates must distinguish between indeterminate and determinate growth. Nature Ecology and Evolution, 2019, 3, 1405-1406.	7.8	1
118	Zebrin Expression in the Cerebellum of Two Crocodilian Species. Brain, Behavior and Evolution, 2020, 95, 45-55.	1.7	1
119	Comparative analyses of the role of postnatal development on the expression of play fighting. , 2000, 36, 136.		1
120	Comparative analyses of the role of postnatal development on the expression of play fighting. Developmental Psychobiology, 2000, 36, 136.	1.6	1
121	Preface. Brain, Behavior and Evolution, 2010, 75, 153-155.	1.7	O
122	Comparative morphology of the rat optic nerve using light and electron microscopy. FASEB Journal, 2010, 24, 642.3.	0.5	0
123	Fooled by a fool hen: male Ruffed Grouse (Bonasa umbellus) courts a female Spruce Grouse (Falcipennis canadensis). Wilson Journal of Ornithology, 2018, 130, 1000.	0.2	0