List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2046690/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
2	Targeting the pro-death and pro-survival functions of autophagy as novel therapeutic strategies in cancer. Autophagy, 2010, 6, 322-329.	9.1	394
3	Identification of Regulatory Phosphorylation Sites in Mitogen-activated Protein Kinase (MAPK)-activated Protein Kinase-1a/p90 That Are Inducible by MAPK. Journal of Biological Chemistry, 1998, 273, 1496-1505.	3.4	333
4	Virtual screening using molecular simulations. Proteins: Structure, Function and Bioinformatics, 2011, 79, 1940-1951.	2.6	171
5	Construction of human activityâ€based phosphorylation networks. Molecular Systems Biology, 2013, 9, 655.	7.2	153
6	Substrate Discrimination among Mitogen-activated Protein Kinases through Distinct Docking Sequence Motifs. Journal of Biological Chemistry, 2008, 283, 19511-19520.	3.4	130
7	Comparison of the specificities of p70 S6 kinase and MAPKAP kinase-1 identifies a relatively specific substrate for p70 S6 kinase: the N-terminal kinase domain of MAPKAP kinase-1 is essential for peptide phosphorylation. FEBS Letters, 1995, 375, 289-293.	2.8	114
8	Targeted Silencing of Elongation Factor 2 Kinase Suppresses Growth and Sensitizes Tumors to Doxorubicin in an Orthotopic Model of Breast Cancer. PLoS ONE, 2012, 7, e41171.	2.5	95
9	Tinkerâ€OpenMM: Absolute and relative alchemical free energies using AMOEBA on GPUs. Journal of Computational Chemistry, 2017, 38, 2047-2055.	3.3	89
10	The Effect of Arrestin Conformation on the Recruitment of c-Raf1, MEK1, and ERK1/2 Activation. PLoS ONE, 2011, 6, e28723.	2.5	87
11	Dopamine depletion and subsequent treatment with I-DOPA, but not the long-lived dopamine agonist pergolide, enhances activity of the Akt pathway in the rat striatum. Journal of Neurochemistry, 2007, 102, 699-711.	3.9	72
12	193â€nm photodissociation of singly and multiply charged peptide anions for acidic proteome characterization. Proteomics, 2011, 11, 1329-1334.	2.2	70
13	c-Jun N-terminal kinase promotes stem cell phenotype in triple-negative breast cancer through upregulation of Notch1 via activation of c-Jun. Oncogene, 2017, 36, 2599-2608.	5.9	70
14	In-Situ Generation of Differential Sensors that Fingerprint Kinases and the Cellular Response to Their Expression. Journal of the American Chemical Society, 2013, 135, 14814-14820.	13.7	69
15	Modeling Organochlorine Compounds and the Ïf-Hole Effect Using a Polarizable Multipole Force Field. Journal of Physical Chemistry B, 2014, 118, 6456-6465.	2.6	69
16	The Kinetic Mechanism of the Dual Phosphorylation of the ATF2 Transcription Factor by p38 Mitogen-activated Protein (MAP) Kinase α. Journal of Biological Chemistry, 2001, 276, 5676-5684.	3.4	67
17	BRAF inhibitors suppress apoptosis through off-target inhibition of JNK signaling. ELife, 2013, 2, e00969.	6.0	67
18	Arrestin-3 Binds c-Jun N-terminal Kinase 1 (JNK1) and JNK2 and Facilitates the Activation of These Ubiquitous JNK Isoforms in Cells via Scaffolding. Journal of Biological Chemistry, 2013, 288, 37332-37342.	3.4	62

#	Article	IF	CITATIONS
19	Nonvisual Arrestins Function as Simple Scaffolds Assembling the MKK4–JNK3α2 Signaling Complex. Biochemistry, 2011, 50, 10520-10529.	2.5	61
20	MEK Inhibitor Selumetinib (AZD6244; ARRY-142886) Prevents Lung Metastasis in a Triple-Negative Breast Cancer Xenograft Model. Molecular Cancer Therapeutics, 2015, 14, 2773-2781.	4.1	61
21	Definition of a Novel Feed-Forward Mechanism for Glycolysis-HIF1α Signaling in Hypoxic Tumors Highlights Aldolase A as a Therapeutic Target. Cancer Research, 2016, 76, 4259-4269.	0.9	59
22	Calcium/Calmodulin Stimulates the Autophosphorylation of Elongation Factor 2 Kinase on Thr-348 and Ser-500 To Regulate Its Activity and Calcium Dependence. Biochemistry, 2012, 51, 2232-2245.	2.5	56
23	Synthesis and biological evaluation of pyrido[2,3-d]pyrimidine-2,4-dione derivatives as eEF-2K inhibitors. Bioorganic and Medicinal Chemistry, 2014, 22, 4910-4916.	3.0	55
24	Haloperidol and Clozapine Differentially Affect the Expression of Arrestins, Receptor Kinases, and Extracellular Signal-Regulated Kinase Activation. Journal of Pharmacology and Experimental Therapeutics, 2008, 325, 276-283.	2.5	53
25	The Anti-Apoptotic Protein PEA-15 Is a Tight Binding Inhibitor of ERK1 and ERK2, Which Blocks Docking Interactions at the D-Recruitment Site. Biochemistry, 2007, 46, 9187-9198.	2.5	52
26	Investigating the Kinetic Mechanism of Inhibition of Elongation Factor 2 Kinase by NH125: Evidence of a Common in Vitro Artifact. Biochemistry, 2012, 51, 2100-2112.	2.5	52
27	Peptide mini-scaffold facilitates JNK3 activation in cells. Scientific Reports, 2016, 6, 21025.	3.3	50
28	JNK Signaling in Stem Cell Self-Renewal and Differentiation. International Journal of Molecular Sciences, 2020, 21, 2613.	4.1	50
29	Physiological Concentrations of Divalent Magnesium Ion Activate the Serine/Threonine Specific Protein Kinase ERK2â€. Biochemistry, 2003, 42, 2960-2970.	2.5	48
30	JNK3 Enzyme Binding to Arrestin-3 Differentially Affects the Recruitment of Upstream Mitogen-activated Protein (MAP) Kinase Kinases. Journal of Biological Chemistry, 2013, 288, 28535-28547.	3.4	48
31	Proximity-Induced Catalysis by the Protein Kinase ERK2. Journal of the American Chemical Society, 2005, 127, 10494-10495.	13.7	45
32	Development of JNK2-Selective Peptide Inhibitors That Inhibit Breast Cancer Cell Migration. ACS Chemical Biology, 2011, 6, 658-666.	3.4	44
33	Properties and Regulation of a Transiently Assembled ERK2·Ets-1 Signaling Complexâ€. Biochemistry, 2006, 45, 13719-13733.	2.5	43
34	MELK: a potential novel therapeutic target for TNBC and other aggressive malignancies. Expert Opinion on Therapeutic Targets, 2017, 21, 849-859.	3.4	43
35	Transient Protein-Protein Interactions and a Random-ordered Kinetic Mechanism for the Phosphorylation of a Transcription Factor by Extracellular-regulated Protein Kinase 2. Journal of Biological Chemistry, 2002, 277, 12532-12540.	3.4	41
36	Novel quinoline incorporating 1,2,4-triazole/oxime hybrids: Synthesis, molecular docking, anti-inflammatory, COX inhibition, ulceroginicity and histopathological investigations. Bioorganic Chemistry, 2017, 75, 242-259.	4.1	41

#	Article	IF	CITATIONS
37	193 nm Ultraviolet Photodissociation Mass Spectrometry for Phosphopeptide Characterization in the Positive and Negative Ion Modes. Journal of Proteome Research, 2016, 15, 2739-2748.	3.7	40
38	Solution NMR Insights into Docking Interactions Involving Inactive ERK2. Biochemistry, 2011, 50, 3660-3672.	2.5	39
39	Activated ERK2 Is a Monomer in Vitro with or without Divalent Cations and When Complexed to the Cytoplasmic Scaffold PEA-15. Biochemistry, 2011, 50, 4568-4578.	2.5	38
40	Two Rate-Limiting Steps in the Kinetic Mechanism of the Serine/Threonine Specific Protein Kinase ERK2:Â A Case of Fast Phosphorylation Followed by Fast Product Releaseâ€. Biochemistry, 2003, 42, 12273-12286.	2.5	37
41	Differential Sensing of MAP Kinases Using SOXâ€Peptides. Angewandte Chemie - International Edition, 2014, 53, 14064-14068.	13.8	37
42	Expanding the Repertoire of an ERK2 Recruitment Site:  Cysteine Footprinting Identifies the D-Recruitment Site as a Mediator of Ets-1 Binding. Biochemistry, 2007, 46, 9174-9186.	2.5	35
43	Design, synthesis and biological evaluation of fused naphthofuro[3,2-c] quinoline-6,7,12-triones and pyrano[3,2-c]quinoline-6,7,8,13-tetraones derivatives as ERK inhibitors with efficacy in BRAF-mutant melanoma. Bioorganic Chemistry, 2019, 82, 290-305.	4.1	35
44	Examining Docking Interactions on ERK2 with Modular Peptide Substrates. Biochemistry, 2011, 50, 9500-9510.	2.5	34
45	Understanding the Specificity of a Docking Interaction between JNK1 and the Scaffolding Protein JIP1. Journal of Physical Chemistry B, 2011, 115, 1491-1502.	2.6	34
46	Pro-metastatic collagen lysyl hydroxylase dimer assemblies stabilized by Fe2+-binding. Nature Communications, 2018, 9, 512.	12.8	34
47	Arrestin-3 scaffolding of the JNK3 cascade suggests a mechanism for signal amplification. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 810-815.	7.1	34
48	High-throughput Database Search and Large-scale Negative Polarity Liquid Chromatography–Tandem Mass Spectrometry with Ultraviolet Photodissociation for Complex Proteomic Samples. Molecular and Cellular Proteomics, 2013, 12, 2604-2614.	3.8	33
49	The Molecular Mechanism of Eukaryotic Elongation Factor 2 Kinase Activation. Journal of Biological Chemistry, 2014, 289, 23901-23916.	3.4	32
50	Rapid characterization of spike variants via mammalian cell surface display. Molecular Cell, 2021, 81, 5099-5111.e8.	9.7	32
51	NO-releasing STAT3 inhibitors suppress BRAF-mutant melanoma growth. European Journal of Medicinal Chemistry, 2020, 186, 111885.	5.5	30
52	Differential functions of ERK1 and ERK2 in lung metastasis processes in triple-negative breast cancer. Scientific Reports, 2020, 10, 8537.	3.3	28
53	A c-Jun N-terminal kinase inhibitor, JNK-IN-8, sensitizes triple negative breast cancer cells to lapatinib. Oncotarget, 2017, 8, 104894-104912.	1.8	28
54	Quantifying ERK2–protein interactions by fluorescence anisotropy: PEA-15 inhibits ERK2 by blocking the binding of DEJL domains. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2005, 1754, 316-323.	2.3	27

#	Article	IF	CITATIONS
55	Phosphorylation of the Transcription Factor Ets-1 by ERK2: Rapid Dissociation of ADP and Phospho-Ets-1. Biochemistry, 2010, 49, 3619-3630.	2.5	26
56	Mechanistic studies on covalent assemblies of metal-mediated hemi-aminal ethers. Chemical Science, 2015, 6, 158-164.	7.4	26
57	Discovery of a potent inhibitor of MELK that inhibits expression of the anti-apoptotic protein Mcl-1 and TNBC cell growth. Bioorganic and Medicinal Chemistry, 2017, 25, 2609-2616.	3.0	26
58	Targeting ERK beyond the boundaries of the kinase active site in melanoma. Molecular Carcinogenesis, 2019, 58, 1551-1570.	2.7	26
59	Purification and characterization of tagless recombinant human elongation factor 2 kinase (eEF-2K) expressed in Escherichia coli. Protein Expression and Purification, 2011, 79, 237-244.	1.3	25
60	From in Silico Discovery to Intracellular Activity: Targeting JNK–Protein Interactions with Small Molecules. ACS Medicinal Chemistry Letters, 2012, 3, 721-725.	2.8	25
61	A Novel Class of Common Docking Domain Inhibitors That Prevent ERK2 Activation and Substrate Phosphorylation. ACS Chemical Biology, 2019, 14, 1183-1194.	3.4	25
62	Models for nuclease catalysis: mechanisms for general acid catalysis of the rapid intramolecular displacement of methoxide from a phosphate diester. Journal of the Chemical Society Perkin Transactions II, 1993, , 1269.	0.9	24
63	High-Throughput Screens for eEF-2 Kinase. Journal of Biomolecular Screening, 2014, 19, 445-452.	2.6	24
64	Synthesis and biological evaluation of p38α kinase-targeting dialkynylimidazoles. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 6293-6297.	2.2	23
65	Reversible Covalent Inhibition of eEFâ€⊋K by Carbonitriles. ChemBioChem, 2014, 15, 2435-2442.	2.6	23
66	Local destabilization, rigid body, and fuzzy docking facilitate the phosphorylation of the transcription factor Ets-1 by the mitogen-activated protein kinase ERK2. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E6287-E6296.	7.1	22
67	Purification of a Model Substrate for Transcription Factor Phosphorylation by ERK2. Protein Expression and Purification, 2001, 23, 191-197.	1.3	21
68	Kinetic mechanism for p38 MAP kinase alpha. A partial rapid-equilibrium random-order ternary-complex mechanism for the phosphorylation of a protein substrate. FEBS Journal, 2005, 272, 4631-4645.	4.7	21
69	Serotonin Analogues as Inhibitors of Breast Cancer Cell Growth. ACS Medicinal Chemistry Letters, 2017, 8, 1072-1076.	2.8	21
70	Manipulating JNK Signaling with (â^')-Zuonin A. ACS Chemical Biology, 2012, 7, 1873-1883.	3.4	20
71	Docking Interactions of Hematopoietic Tyrosine Phosphatase with MAP Kinases ERK2 and p381±. Biochemistry, 2012, 51, 8047-8049.	2.5	20
72	Elucidating the Phosphate Binding Mode of Phosphate-Binding Protein: The Critical Effect of Buffer Solution. Journal of Physical Chemistry B, 2018, 122, 6371-6376.	2.6	20

#	Article	IF	CITATIONS
73	A Model of a MAPK•Substrate Complex in an Active Conformation: A Computational and Experimental Approach. PLoS ONE, 2011, 6, e18594.	2.5	20
74	Computational Insights for the Discovery of Non-ATP Competitive Inhibitors of MAP Kinases. Current Pharmaceutical Design, 2012, 18, 1173-1185.	1.9	19
75	Chargeâ€Siteâ€Dependent Dissociation of Hydrogenâ€Rich Radical Peptide Cations upon Vacuum UV Photoexcitation. Chemistry - A European Journal, 2012, 18, 5374-5383.	3.3	19
76	Structural and Dynamic Features of F-recruitment Site Driven Substrate Phosphorylation by ERK2. Scientific Reports, 2015, 5, 11127.	3.3	19
77	Structural Basis for the Recognition of Eukaryotic Elongation Factor 2 Kinase by Calmodulin. Structure, 2016, 24, 1441-1451.	3.3	19
78	Development of a High-Throughput Lysyl Hydroxylase (LH) Assay and Identification of Small-Molecule Inhibitors against LH2. SLAS Discovery, 2019, 24, 484-491.	2.7	19
79	Overexpression of GRK6 rescues l-DOPA-induced signaling abnormalities in the dopamine-depleted striatum of hemiparkinsonian rats. Experimental Neurology, 2015, 266, 42-54.	4.1	17
80	Modulating multi-functional ERK complexes by covalent targeting of a recruitment site in vivo. Nature Communications, 2019, 10, 5232.	12.8	17
81	Longitudinal tracking of subpopulation dynamics and molecular changes during LNCaP cell castration and identification of inhibitors that could target the PSAâ^'/lo castration-resistant cells. Oncotarget, 2016, 7, 14220-14240.	1.8	17
82	Structural Evaluation of Protein/Metal Complexes via Native Electrospray Ultraviolet Photodissociation Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2020, 31, 1140-1150.	2.8	16
83	A collagen glucosyltransferase drives lung adenocarcinoma progression in mice. Communications Biology, 2021, 4, 482.	4.4	16
84	Using docking and alchemical free energy approach to determine the binding mechanism of eEF2K inhibitors and prioritizing the compound synthesis. Frontiers in Molecular Biosciences, 2015, 2, 9.	3.5	15
85	Signal Integration at Elongation Factor 2 Kinase. Journal of Biological Chemistry, 2017, 292, 2032-2045.	3.4	15
86	Structural Dynamics of the Activation of Elongation Factor 2 Kinase by Ca2+-Calmodulin. Journal of Molecular Biology, 2018, 430, 2802-2821.	4.2	15
87	Identification of the JNK-Active Triple-Negative Breast Cancer Cluster Associated With an Immunosuppressive Tumor Microenvironment. Journal of the National Cancer Institute, 2022, 114, 97-108.	6.3	15
88	Quantification of a Pharmacodynamic ERK End Point in Melanoma Cell Lysates: Toward Personalized Precision Medicine. ACS Medicinal Chemistry Letters, 2015, 6, 47-52.	2.8	14
89	Development of 2′-aminospiro [pyrano[3,2–c]quinoline]-3′-carbonitrile derivatives as non-ATP competitive Src kinase inhibitors that suppress breast cancer cell migration and proliferation. Bioorganic Chemistry, 2021, 116, 105344.	4.1	14
90	A Fluorescenceâ€Based Assay for p38α Recruitment Site Binders: Identification of Rooperol as a Novel p38α Kinase Inhibitor. ChemBioChem, 2013, 14, 66-71.	2.6	13

#	Article	IF	CITATIONS
91	A scalable lysyl hydroxylase 2 expression system and luciferase-based enzymatic activity assay. Archives of Biochemistry and Biophysics, 2017, 618, 45-51.	3.0	13
92	Design, synthesis, and DNA interaction studies of furo-imidazo[3.3.3]propellane derivatives: Potential anticancer agents. Bioorganic Chemistry, 2019, 85, 585-599.	4.1	13
93	Toward a Stable Hydroxyphosphorane. Organic Letters, 2002, 4, 201-203.	4.6	12
94	Identification and Validation of Novel PERK Inhibitors. Journal of Chemical Information and Modeling, 2014, 54, 1467-1475.	5.4	12
95	Propyphenazone-Based Analogues as Prodrugs and Selective Cyclooxygenase-2 Inhibitors. ACS Medicinal Chemistry Letters, 2014, 5, 983-988.	2.8	12
96	Arrestin-3 interaction with maternal embryonic leucine-zipper kinase. Cellular Signalling, 2019, 63, 109366.	3.6	12
97	JNK2 Is Required for the Tumorigenic Properties of Melanoma Cells. ACS Chemical Biology, 2019, 14, 1426-1435.	3.4	12
98	Quantification of ERK Kinase Activity in Biological Samples Using Differential Sensing. ACS Chemical Biology, 2020, 15, 83-92.	3.4	12
99	Multiplexing the Quantitation of MAP Kinase Activities Using Differential Sensing. Journal of the American Chemical Society, 2022, 144, 4017-4025.	13.7	12
100	Lifetimes of Imidinium Ions in Aqueous Solution. Journal of the American Chemical Society, 1997, 119, 7271-7280.	13.7	11
101	A kinetic approach towards understanding substrate interactions and the catalytic mechanism of the serine/threonine protein kinase ERK2: identifying a potential regulatory role for divalent magnesium. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2004, 1697, 81-87.	2.3	11
102	Following in vitro activation of mitogen-activated protein kinases by mass spectrometry and tryptic peptide analysis: purifying fully activated p38 mitogen-activated protein kinase α. Analytical Biochemistry, 2005, 336, 1-10.	2.4	11
103	Arrestinâ€3â€Dependent Activation of câ€Jun Nâ€Terminal Kinases (JNKs). Current Protocols in Pharmacology, 2015, 68, 2.12.1-2.12.26.	4.0	11
104	Assignment of Backbone Resonances in a Eukaryotic Protein Kinase – ERK2 as a Representative Example. Methods in Molecular Biology, 2012, 831, 359-368.	0.9	10
105	The Two Non-Visual Arrestins Engage ERK2 Differently. Journal of Molecular Biology, 2022, 434, 167465.	4.2	10
106	Droplet-based screening of phosphate transfer catalysis reveals how epistasis shapes MAP kinase interactions with substrates. Nature Communications, 2022, 13, 844.	12.8	10
107	Computational and Experimental Studies of Inhibitor Design for Aldolase A. Journal of Physical Chemistry B, 2019, 123, 6034-6041.	2.6	9
108	Luminescence Energy Transfer–Based Screening and Target Engagement Approaches for Chemical Biology and Drug Discovery. SLAS Discovery, 2021, 26, 984-994.	2.7	9

#	Article	IF	CITATIONS
109	The role of calcium in the interaction between calmodulin and a minimal functional construct of eukaryotic elongation factor 2 kinase. Protein Science, 2019, 28, 2089-2098.	7.6	8
110	Solution Structure of the Carboxy-Terminal Tandem Repeat Domain of Eukaryotic Elongation Factor 2 Kinase and Its Role in Substrate Recognition. Journal of Molecular Biology, 2019, 431, 2700-2717.	4.2	8
111	Developing Colorimetric and Luminescence-Based High-Throughput Screening Platforms for Monitoring the GTPase Activity of Ferrous Iron Transport Protein B (FeoB). SLAS Discovery, 2019, 24, 597-605.	2.7	8
112	Structural dynamics of the complex of calmodulin with a minimal functional construct of eukaryotic elongation factor 2 kinase and the role of Thr348 autophosphorylation. Protein Science, 2021, 30, 1221-1234.	7.6	8
113	Fluorescent Peptide Assays for Protein Kinases. Current Protocols in Molecular Biology, 2010, 91, Unit 18.17.	2.9	7
114	A tunable assay for modulators of genome-destabilizing DNA structures. Nucleic Acids Research, 2019, 47, e73-e73.	14.5	7
115	A Fluorescence-Based High-Throughput Assay for the Identification of Anticancer Reagents Targeting Fructose-1,6-Bisphosphate Aldolase. SLAS Discovery, 2018, 23, 1-10.	2.7	6
116	Electrostatic catalysis of the hydrolysis of a phosphate diester in water. Journal of the Chemical Society Chemical Communications, 1992, , 1770.	2.0	5
117	Regulation of protein phosphorylation within the MKK1–ERK2 complex by MP1 and the MP1•P14 heterodimer. Archives of Biochemistry and Biophysics, 2007, 460, 85-91.	3.0	5
118	Computational insights into the binding of IN17 inhibitors to MELK. Journal of Molecular Modeling, 2019, 25, 151.	1.8	5
119	Structure of the C-Terminal Helical Repeat Domain of Eukaryotic Elongation Factor 2 Kinase. Biochemistry, 2016, 55, 5377-5386.	2.5	4
120	Optimization of a Luminescence-Based High-Throughput Screening Assay for Detecting Apyrase Activity. SLAS Discovery, 2017, 22, 94-101.	2.7	4
121	Development of a cost effective and robust AlphaScreen [®] platform for HTS application. BioTechniques, 2018, 64, 181-183.	1.8	4
122	Discovery of an Effective Small-Molecule Allosteric Inhibitor of New Delhi Metallo-β-lactamase (NDM). ACS Infectious Diseases, 2022, 8, 811-824.	3.8	4
123	The expression and purification of the N-terminal activation domain of the transcription factor c-Myc: A model substrate for exploring ERK2 docking interactions. Protein Expression and Purification, 2007, 53, 80-86.	1.3	3
124	Application of Eukaryotic Elongation Factor-2 Kinase (eEF-2K) for Cancer Therapy: Expression, Purification, and High-Throughput Inhibitor Screening. Methods in Molecular Biology, 2016, 1360, 19-33.	0.9	3
125	A â€ ⁻ light-up' intercalator displacement assay for detection of triplex DNA stabilizers. Chemical Communications, 2020, 56, 1996-1999.	4.1	3
126	6â€fâ€fReaction mechanisms : Part (i) Polar reactions. Annual Reports on the Progress of Chemistry Section B, 2002, 98, 253-291.	0.9	2

KEVIN N DALBY

#	Article	IF	CITATIONS
127	Conformational preference of ChaK1 binding peptides: a molecular dynamics study. PMC Biophysics, 2010, 3, 2.	2.3	2
128	Elucidating binding modes of zuonin A enantiomers to JNK1 via in silico methods. Journal of Molecular Graphics and Modelling, 2013, 45, 38-44.	2.4	2
129	Development of cellâ€based high throughput luminescence assay for drug discovery in inhibiting OCT4/DNAâ€PKcs and OCT4–MK2 interactions. Biotechnology and Bioengineering, 2021, 118, 1987-2000.	3.3	2
130	Mechanism of catalysis of the hydrolysis of a formamidinium compound. Perkin Transactions II RSC, 2001, , 1961-1967.	1.1	1
131	10â€fâ€fReaction mechanisms : Part (ii) Polar reactions. Annual Reports on the Progress of Chemistry Section B, 2003, 99, 351.	0.9	1
132	12ÂÂReaction mechanisms : Part (ii) Polar reactions. Annual Reports on the Progress of Chemistry Section B, 2004, 100, 311-333.	0.9	1
133	Induction of Autophagy by Polyphenolic Compounds in Cancer: A Novel Strategy to induce cell death and to Treat Cancer. , 2012, , 237-261.		1
134	A Robust and Cost-Effective Luminescent-Based High-Throughput Assay for Fructose-1,6-Bisphosphate Aldolase A. SLAS Discovery, 2020, 25, 1038-1046.	2.7	1
135	Computational Insights for the Discovery of Non-ATP Competitive Inhibitors of MAP Kinases. Current Drug Metabolism, 2012, 18, 1173-1185.	1.2	1
136	Biomechanical Dependence of SARS-CoV-2 Infections. ACS Applied Bio Materials, 2022, 5, 2307-2315.	4.6	1
137	Reaction Mechanisms. Part 1. Polar Reactions. ChemInform, 2003, 34, no.	0.0	0
138	Phage display identifies novel peptides that bind extracellular-regulated protein kinase 2 to compete with transcription factor binding. Journal of Physical Organic Chemistry, 2004, 17, 461-471.	1.9	0
139	Reaction Mechanisms. Part 2. Polar Reactions. ChemInform, 2004, 35, no.	0.0	0
140	Conserved Elements of the Cytochrome P-450 Superfamily Found in Monoamine Oxidase B. NeuroToxicology, 2004, 25, 73-78.	3.0	0
141	Reaction Mechanisms. Part 2. Polar Reactions. ChemInform, 2005, 36, no.	0.0	0
142	11ÂÂReaction mechanisms : Part (ii) Polar reactions. Annual Reports on the Progress of Chemistry Section B, 2005, 101, 264.	0.9	0
143	Corrigendum to "Purification and characterization of tagless recombinant human elongation factor 2 kinase (eEF-2K) expressed in Escherichia coli―[Protein Expression and Purification 79 (2011) 237–244]. Protein Expression and Purification, 2012, 85, 250.	1.3	0
144	Cover Image, Volume 58, Issue 9. Molecular Carcinogenesis, 2019, 58, i.	2.7	0

KEVIN N DALBY

#	Article	IF	CITATIONS
145	Evidence of the Regulation of JNK2 through Oligomerization. FASEB Journal, 2013, 27, 789.22.	0.5	0
146	JNK3 binding to arrestinâ€3 differentially affects recruitment of upstream MAP kinase kinases. FASEB Journal, 2013, 27, 1042.4.	0.5	0
147	Targeting the transient receptor potentialâ€melastatinâ€like 7 (Trpm7) kinase domain with the first inhibitor, inhibited breast cancer cell migration, invasion and tumor metastasis FASEB Journal, 2015, 29, 1021.9.	0.5	0
148	A Toolbox of Structural Biology and Enzyme Kinetics Reveals the Case for ERK Docking Site Inhibition. , 2020, , 109-139.		0