Alem W Kahsai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2046663/publications.pdf

Version: 2024-02-01

23 papers 2,669 citations

394421 19 h-index 642732 23 g-index

24 all docs

24 docs citations

times ranked

24

3280 citing authors

#	Article	IF	CITATIONS
1	GPCR-mediated \hat{l}^2 -arrestin activation deconvoluted with single-molecule precision. Cell, 2022, 185, 1661-1675.e16.	28.9	43
2	Noncanonical scaffolding of G _{αi} and β-arrestin by G protein–coupled receptors. Science, 2021, 371, .	12.6	64
3	<i>β</i> -Arrestin–Biased Allosteric Modulator Potentiates Carvedilol-Stimulated <i>β</i> Adrenergic Receptor Cardioprotection. Molecular Pharmacology, 2021, 100, 568-579.	2.3	24
4	Unique Positive Cooperativity Between the <i>î²</i> -Arrestin–Biased <i>î²</i> -Blocker Carvedilol and a Small Molecule Positive Allosteric Modulator of the <i>î²</i> -Adrenergic Receptor. Molecular Pharmacology, 2021, 100, 513-525.	2.3	18
5	The GPCR–β-arrestin complex allosterically activates C-Raf by binding its amino terminus. Journal of Biological Chemistry, 2021, 297, 101369.	3.4	7
6	DeSiphering receptor core-induced and ligand-dependent conformational changes in arrestin via genetic encoded trimethylsilyl 1H-NMR probe. Nature Communications, 2020, 11, 4857.	12.8	25
7	Mechanism of \hat{I}^2 ₂ AR regulation by an intracellular positive allosteric modulator. Science, 2019, 364, 1283-1287.	12.6	82
8	Design, synthesis, and functional assessment of Cmpd-15 derivatives as negative allosteric modulators for the \hat{l}^2 2-adrenergic receptor. Bioorganic and Medicinal Chemistry, 2018, 26, 2320-2330.	3.0	6
9	Small-Molecule Positive Allosteric Modulators of the <i>\hat{l}^2</i> ₂ -Adrenoceptor Isolated from DNA-Encoded Libraries. Molecular Pharmacology, 2018, 94, 850-861.	2.3	66
10	Gq activity- and \hat{l}^2 -arrestin-1 scaffolding-mediated ADGRG2/CFTR coupling are required for male fertility. ELife, 2018, 7, .	6.0	66
11	GPCR signaling: conformational activation of arrestins. Cell Research, 2018, 28, 783-784.	12.0	20
12	Allosteric "beta-blocker―isolated from a DNA-encoded small molecule library. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 1708-1713.	7.1	118
13	Distinct conformations of GPCR–β-arrestin complexes mediate desensitization, signaling, and endocytosis. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 2562-2567.	7.1	281
14	Arrestin-biased AT1R agonism induces acute catecholamine secretion through TRPC3 coupling. Nature Communications, 2017, 8, 14335.	12.8	85
15	Mechanism of intracellular allosteric \hat{l}^2 2AR antagonist revealed by X-ray crystal structure. Nature, 2017, 548, 480-484.	27.8	148
16	Adaptive Activation of a Stress Response Pathway Improves Learning and Memory Through Gs and \hat{l}^2 -Arrestin- $l\hat{a}$ (Regulated Lactate Metabolism. Biological Psychiatry, 2017, 81, 654-670.	1.3	42
17	Conformationally selective RNA aptamers allosterically modulate the \hat{I}^2 2-adrenoceptor. Nature Chemical Biology, 2016, 12, 709-716.	8.0	65
18	GPCR-G Protein-Î ² -Arrestin Super-Complex Mediates Sustained G Protein Signaling. Cell, 2016, 166, 907-919.	28.9	443

#	Article	IF	CITATIONS
19	Allosteric nanobodies reveal the dynamic range and diverse mechanisms of G-protein-coupled receptor activation. Nature, 2016, 535, 448-452.	27.8	290
20	Visualization of arrestin recruitment by a G-protein-coupled receptor. Nature, 2014, 512, 218-222.	27.8	433
21	Monitoring protein conformational changes and dynamics using stable-isotope labeling and mass spectrometry. Nature Protocols, 2014, 9, 1301-1319.	12.0	49
22	Discovery of \hat{I}^2 2 Adrenergic Receptor Ligands Using Biosensor Fragment Screening of Tagged Wild-Type Receptor. ACS Medicinal Chemistry Letters, 2013, 4, 1005-1010.	2.8	65
23	Multiple ligand-specific conformations of the \hat{I}^2 2-adrenergic receptor. Nature Chemical Biology, 2011, 7, 692-700.	8.0	229