## Hung-Yi Pu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2045901/publications.pdf Version: 2024-02-01



HUNC-YI PU

| #  | Article                                                                                                                                                                             | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole.<br>Astrophysical Journal Letters, 2019, 875, L1.                                           | 8.3 | 2,264     |
| 2  | First M87 Event Horizon Telescope Results. VI. The Shadow and Mass of the Central Black Hole.<br>Astrophysical Journal Letters, 2019, 875, L6.                                      | 8.3 | 897       |
| 3  | First M87 Event Horizon Telescope Results. V. Physical Origin of the Asymmetric Ring. Astrophysical<br>Journal Letters, 2019, 875, L5.                                              | 8.3 | 814       |
| 4  | First M87 Event Horizon Telescope Results. IV. Imaging the Central Supermassive Black Hole.<br>Astrophysical Journal Letters, 2019, 875, L4.                                        | 8.3 | 806       |
| 5  | First M87 Event Horizon Telescope Results. II. Array and Instrumentation. Astrophysical Journal Letters, 2019, 875, L2.                                                             | 8.3 | 618       |
| 6  | First Sagittarius A* Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole in the Center of the Milky Way. Astrophysical Journal Letters, 2022, 930, L12.   | 8.3 | 568       |
| 7  | First M87 Event Horizon Telescope Results. III. Data Processing and Calibration. Astrophysical Journal Letters, 2019, 875, L3.                                                      | 8.3 | 519       |
| 8  | First M87 Event Horizon Telescope Results. VIII. Magnetic Field Structure near The Event Horizon.<br>Astrophysical Journal Letters, 2021, 910, L13.                                 | 8.3 | 297       |
| 9  | First M87 Event Horizon Telescope Results. VII. Polarization of the Ring. Astrophysical Journal Letters, 2021, 910, L12.                                                            | 8.3 | 215       |
| 10 | First Sagittarius A* Event Horizon Telescope Results. VI. Testing the Black Hole Metric. Astrophysical<br>Journal Letters, 2022, 930, L17.                                          | 8.3 | 215       |
| 11 | First Sagittarius A* Event Horizon Telescope Results. V. Testing Astrophysical Models of the Galactic<br>Center Black Hole. Astrophysical Journal Letters, 2022, 930, L16.          | 8.3 | 187       |
| 12 | The Event Horizon General Relativistic Magnetohydrodynamic Code Comparison Project.<br>Astrophysical Journal, Supplement Series, 2019, 243, 26.                                     | 7.7 | 175       |
| 13 | First Sagittarius A* Event Horizon Telescope Results. III. Imaging of the Galactic Center Supermassive<br>Black Hole. Astrophysical Journal Letters, 2022, 930, L14.                | 8.3 | 163       |
| 14 | First Sagittarius A* Event Horizon Telescope Results. II. EHT and Multiwavelength Observations, Data<br>Processing, and Calibration. Astrophysical Journal Letters, 2022, 930, L13. | 8.3 | 142       |
| 15 | First Sagittarius A* Event Horizon Telescope Results. IV. Variability, Morphology, and Black Hole Mass.<br>Astrophysical Journal Letters, 2022, 930, L15.                           | 8.3 | 137       |
| 16 | Constraints on black-hole charges with the 2017 EHT observations of M87*. Physical Review D, 2021, 103, .                                                                           | 4.7 | 126       |
| 17 | Parabolic Jets from the Spinning Black Hole in M87. Astrophysical Journal, 2018, 868, 146.                                                                                          | 4.5 | 103       |
| 18 | ENERGETIC GAMMA RADIATION FROM RAPIDLY ROTATING BLACK HOLES. Astrophysical Journal, 2016, 818, 50                                                                                   | 4.5 | 74        |

Нимс-Үі Ри

| #  | Article                                                                                                                                                                                       | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Polarimetric Properties of Event Horizon Telescope Targets from ALMA. Astrophysical Journal Letters, 2021, 910, L14.                                                                          | 8.3  | 67        |
| 20 | Event Horizon Telescope observations of the jet launching and collimation in Centaurus A. Nature Astronomy, 2021, 5, 1017-1028.                                                               | 10.1 | 65        |
| 21 | Broadband Multi-wavelength Properties of M87 during the 2017 Event Horizon Telescope Campaign.<br>Astrophysical Journal Letters, 2021, 911, L11.                                              | 8.3  | 56        |
| 22 | Event Horizon Telescope imaging of the archetypal blazar 3C 279 at an extreme 20 microarcsecond resolution. Astronomy and Astrophysics, 2020, 640, A69.                                       | 5.1  | 54        |
| 23 | Monitoring the Morphology of M87* in 2009–2017 with the Event Horizon Telescope. Astrophysical<br>Journal, 2020, 901, 67.                                                                     | 4.5  | 51        |
| 24 | THEMIS: A Parameter Estimation Framework for the Event Horizon Telescope. Astrophysical Journal, 2020, 897, 139.                                                                              | 4.5  | 47        |
| 25 | Verification of Radiative Transfer Schemes for the EHT. Astrophysical Journal, 2020, 897, 148.                                                                                                | 4.5  | 44        |
| 26 | Superresolution Interferometric Imaging with Sparse Modeling Using Total Squared Variation:<br>Application to Imaging the Black Hole Shadow. Astrophysical Journal, 2018, 858, 56.            | 4.5  | 43        |
| 27 | The Polarized Image of a Synchrotron-emitting Ring of Gas Orbiting a Black Hole. Astrophysical<br>Journal, 2021, 912, 35.                                                                     | 4.5  | 43        |
| 28 | Millimeter Light Curves of Sagittarius A* Observed during the 2017 Event Horizon Telescope Campaign.<br>Astrophysical Journal Letters, 2022, 930, L19.                                        | 8.3  | 43        |
| 29 | ODYSSEY: A PUBLIC GPU-BASED CODE FOR GENERALÂRELATIVISTIC RADIATIVE TRANSFER IN KERR SPACETIME.<br>Astrophysical Journal, 2016, 820, 105.                                                     | 4.5  | 37        |
| 30 | Hybrid Very Long Baseline Interferometry Imaging and Modeling with themis. Astrophysical Journal, 2020, 898, 9.                                                                               | 4.5  | 34        |
| 31 | STEADY GENERAL RELATIVISTIC MAGNETOHYDRODYNAMIC INFLOW/OUTFLOW SOLUTION ALONG<br>LARGE-SCALE MAGNETIC FIELDS THAT THREAD A ROTATING BLACK HOLE. Astrophysical Journal, 2015, 801,<br>56.      | 4.5  | 30        |
| 32 | STRUCTURAL TRANSITION IN THE NGC 6251 JET: AN INTERPLAY WITH THE SUPERMASSIVE BLACK HOLE AND ITS HOST GALAXY. Astrophysical Journal, 2016, 833, 288.                                          | 4.5  | 30        |
| 33 | INDICATION OF THE BLACK HOLE POWERED JET IN M87 BY VSOP OBSERVATIONS. Astrophysical Journal, 2016, 833, 56.                                                                                   | 4.5  | 30        |
| 34 | LEPTON ACCELERATION IN THE VICINITY OF THE EVENT HORIZON: HIGH-ENERGY AND VERY-HIGH-ENERGY<br>EMISSIONS FROM ROTATING BLACK HOLES WITH VARIOUS MASSES. Astrophysical Journal, 2016, 833, 142. | 4.5  | 30        |
| 35 | THE EFFECTS OF ACCRETION FLOW DYNAMICS ON THE BLACK HOLE SHADOW OF SAGITTARIUS A*.<br>Astrophysical Journal, 2016, 831, 4.                                                                    | 4.5  | 28        |
| 36 | Probing the Innermost Accretion Flow Geometry of Sgr A* with Event Horizon Telescope.<br>Astrophysical Journal, 2018, 863, 148.                                                               | 4.5  | 24        |

Нимс-Үі Ри

| #  | Article                                                                                                                                                                                             | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Spacetime Tomography Using the Event Horizon Telescope. Astrophysical Journal, 2020, 892, 132.                                                                                                      | 4.5 | 23        |
| 38 | Selective Dynamical Imaging of Interferometric Data. Astrophysical Journal Letters, 2022, 930, L18.                                                                                                 | 8.3 | 21        |
| 39 | Characterizing and Mitigating Intraday Variability: Reconstructing Source Structure in Accreting<br>Black Holes with mm-VLBI. Astrophysical Journal Letters, 2022, 930, L21.                        | 8.3 | 20        |
| 40 | A Universal Power-law Prescription for Variability from Synthetic Images of Black Hole Accretion<br>Flows. Astrophysical Journal Letters, 2022, 930, L20.                                           | 8.3 | 20        |
| 41 | Lepton Acceleration in the Vicinity of the Event Horizon: Very High Energy Emissions from Supermassive Black Holes. Astrophysical Journal, 2017, 845, 77.                                           | 4.5 | 17        |
| 42 | Observable Emission Features of Black Hole GRMHD Jets on Event Horizon Scales. Astrophysical<br>Journal, 2017, 845, 160.                                                                            | 4.5 | 16        |
| 43 | Properties of Trans-fast Magnetosonic Jets in Black Hole Magnetospheres. Astrophysical Journal, 2020,<br>892, 37.                                                                                   | 4.5 | 15        |
| 44 | On spin dependence of relativistic acoustic geometry. Classical and Quantum Gravity, 2012, 29, 245020.                                                                                              | 4.0 | 13        |
| 45 | First-generation science cases for ground-based terahertz telescopes. Publication of the<br>Astronomical Society of Japan, 2016, 68, .                                                              | 2.5 | 12        |
| 46 | The Greenland telescope: Thule operations. , 2018, , .                                                                                                                                              |     | 8         |
| 47 | Searching for High-energy, Horizon-scale Emissions from Galactic Black Hole Transients during<br>Quiescence. Astrophysical Journal, 2017, 845, 40.                                                  | 4.5 | 7         |
| 48 | LAUNCHING AND QUENCHING OF BLACK HOLE RELATIVISTIC JETS AT LOW ACCRETION RATE. Astrophysical Journal, 2012, 758, 113.                                                                               | 4.5 | 6         |
| 49 | The Greenland Telescope: antenna retrofit status and future plans. Proceedings of SPIE, 2016, , .                                                                                                   | 0.8 | 6         |
| 50 | The Variability of the Black Hole Image in M87 at the Dynamical Timescale. Astrophysical Journal, 2022, 925, 13.                                                                                    | 4.5 | 6         |
| 51 | A Revised View of the Linear Polarization in the Subparsec Core of M87 at 7 mm. Astrophysical Journal, 2021, 922, 180.                                                                              | 4.5 | 5         |
| 52 | Enhanced gamma radiation towards the rotation axis from the immediate vicinity of extremely rotating black holes. Monthly Notices of the Royal Astronomical Society: Letters, 2017, 471, L135-L139. | 3.3 | 4         |
| 53 | Relativistic jet acceleration region in a black hole magnetosphere. Physical Review D, 2021, 104, .                                                                                                 | 4.7 | 3         |
| 54 | High-energy and Very High Energy Emission from Stellar-mass Black Holes Moving in Gaseous Clouds.<br>Astrophysical Journal, 2018, 867, 120.                                                         | 4.5 | 2         |

Нимс-Үі Ри

| #  | Article                                                                                                                                                  | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Lightning black holes as unidentified TeV sources. Journal of Astrophysics and Astronomy, 2018, 39, 1.                                                   | 1.0 | 2         |
| 56 | Constraints on the Mass Accretion Rate onto the Supermassive Black Hole of Cygnus A Using the Submillimeter Array. Astrophysical Journal, 2021, 911, 35. | 4.5 | 1         |
| 57 | Observing the Black Hole Shadow of M87 and the Greenland Telescope Project: GR Test in the Strong Gravity Regime. , 2017, , .                            |     | 0         |