Xiahhui Gui

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2045849/publications.pdf

Version: 2024-02-01

57 papers	2,433 citations	186265 28 h-index	48 g-index
57 all docs	57 docs citations	57 times ranked	956 citing authors

#	Article	IF	CITATIONS
1	Mechanism analysis of DTAB on the change in surface wettability of low-rank coal and its relationship to flotability. International Journal of Coal Preparation and Utilization, 2022, 42, 82-96.	2.1	9
2	Interfacial nanobubbles on different hydrophobic surfaces and their effect on the interaction of inter-particles. Applied Surface Science, 2022, 582, 152184.	6.1	6
3	Influence of Air Solubility on the Flotation Performance of Low-Rank Coal. Langmuir, 2022, 38, 2467-2477.	3.5	2
4	Experimental study on the interaction forces between water droplets and mineral surfaces. Chemical Physics, 2022, 559, 111534.	1.9	3
5	Probing the interactions between collector molecules and hydrophobic graphite surfaces using chemical force microscopy. Applied Surface Science, 2022, 597, 153760.	6.1	5
6	Investigation of interactions between oxygen-containing groups and water molecules on coal surfaces using density functional theory. Fuel, 2021, 287, 119556.	6.4	58
7	Polyethylene oxide assisted separation of molybdenite from quartz by flotation. Minerals Engineering, 2021, 162, 106765.	4.3	14
8	Recent advances for understanding the role of nanobubbles in particles flotation. Advances in Colloid and Interface Science, 2021, 291, 102403.	14.7	40
9	Characteristics of interfacial nanobubbles and their interaction with solid surfaces. Applied Surface Science, 2021, 550, 149258.	6.1	3
10	Adhesion forces for water/oil droplet and bubble on coking coal surfaces with different roughness. International Journal of Mining Science and Technology, 2021, 31, 681-687.	10.3	32
11	Removal of organic pollutants in coking wastewater based on coal-based adsorbents: A pilot-scale study of static adsorption and flotation. Journal of Environmental Chemical Engineering, 2021, 9, 106844.	6.7	16
12	Enhancement of oxidized coal flotation by preconditioning with positive-charged microbubbles. International Journal of Coal Preparation and Utilization, 2020, 40, 553-563.	2.1	6
13	Effect of microemulsion on low-rank coal flotation by mixing DTAB and diesel oil. Fuel, 2020, 260, 116321.	6.4	42
14	Interaction characteristics between diesel and coal with different hydrophilicity: Kinetic and force effects. Separation and Purification Technology, 2020, 232, 115958.	7.9	21
15	Oily collector pre-dispersion for enhanced surface adsorption during fine low-rank coal flotation. Journal of Industrial and Engineering Chemistry, 2020, 82, 303-308.	5.8	23
16	Role of molecular simulation in understanding the mechanism of low-rank coal flotation: A review. Fuel, 2020, 262, 116535.	6.4	108
17	Improved floatability of low-rank coal through surface modification by hydrothermal pretreatment. Journal of Cleaner Production, 2020, 246, 119025.	9.3	44
18	Effect of polyethylene oxide on flotation of molybdenite fines. Minerals Engineering, 2020, 146, 106146.	4.3	22

#	Article	IF	CITATIONS
19	Effect of surface roughness on the detachment between bubble and glass beads with different contact angles. Powder Technology, 2020, 361, 812-816.	4.2	29
20	Synergistic Adsorption Mechanism of Anionic and Cationic Surfactant Mixtures on Low-Rank Coal Flotation. ACS Omega, 2020, 5, 20630-20637.	3.5	36
21	Study of Interactions between Interfacial Nanobubbles and Probes of Different Hydrophobicities. ACS Omega, 2020, 5, 20363-20372.	3.5	7
22	Effect of Nanobubbles on the Flotation Performance of Oxidized Coal. ACS Omega, 2020, 5, 20283-20290.	3.5	21
23	Molecular Dynamics Simulation Study of Bubble Attachment at the Coal Surface with Varying Coalification Degrees. ACS Omega, 2020, 5, 20134-20140.	3.5	4
24	New Insights into the Role of Surface Nanobubbles in Bubble-Particle Detachment. Langmuir, 2020, 36, 4339-4346.	3.5	23
25	A New Experimental Approach to Evaluate Coal Particles Floatability: Bubble–Particle Attachment and Detachment Kinetics. ACS Omega, 2020, 5, 16733-16738.	3.5	5
26	Studying interactions between undecane and graphite surfaces by chemical force microscopy and molecular dynamics simulations. Fuel, 2020, 269, 117367.	6.4	56
27	New insight into surface wetting of coal with varying coalification degree: An experimental and molecular dynamics simulation study. Applied Surface Science, 2020, 511, 145610.	6.1	88
28	Flotation intensification of low-rank coal using a new compound collector. Powder Technology, 2020, 370, 197-205.	4.2	24
29	Improving the adsorption of oily collector on the surface of low-rank coal during flotation using a cationic surfactant: An experimental and molecular dynamics simulation study. Fuel, 2019, 235, 687-695.	6.4	173
30	Mechanism of shale oil as an effective collector for oxidized coal flotation: From bubble–particle attachment and detachment point of view. Fuel, 2019, 255, 115885.	6.4	47
31	Effect of Comminution Methods on Low-Rank Coal Bubble–Particle Attachment/Detachment: Implications for Flotation. Minerals (Basel, Switzerland), 2019, 9, 452.	2.0	5
32	Effect of vibration mode on detachment of low-rank coal particle from oscillating bubble. Powder Technology, 2019, 356, 880-883.	4.2	13
33	Recovering unburned carbon from gasification fly ash using saline water. Waste Management, 2019, 98, 29-36.	7.4	58
34	Synergistic adsorption of polar and nonpolar reagents on oxygen-containing graphite surfaces: Implications for low-rank coal flotation. Journal of Colloid and Interface Science, 2019, 557, 276-281.	9.4	60
35	Improving the floatability of coal with varying surface roughness through hypobaric treatment. Powder Technology, 2019, 345, 643-648.	4.2	35
36	Separation of unburned carbon from coal fly ash: A review. Powder Technology, 2019, 353, 372-384.	4.2	86

#	Article	IF	CITATIONS
37	Enhancement of flotation response of fine low-rank coal using positively charged microbubbles. Fuel, 2019, 245, 505-513.	6.4	56
38	Enhancement of the surface hydrophobicity of low-rank coal by adsorbing DTAB: An experimental and molecular dynamics simulation study. Fuel, 2019, 239, 145-152.	6.4	123
39	Effects of pore compression pretreatment on the flotation of low-rank coal. Fuel, 2019, 239, 63-69.	6.4	32
40	Performance of used lubricating oil as flotation collector for the recovery of clean low-rank coal. Fuel, 2019, 239, 717-725.	6.4	77
41	The application of atomic force microscopy in mineral flotation. Advances in Colloid and Interface Science, 2018, 256, 373-392.	14.7	108
42	Combined effect of chemical composition and spreading velocity of collector on flotation performance of oxidized coal. Powder Technology, 2018, 325, 1-10.	4.2	27
43	Hydration film measurement on mica and coal surfaces using atomic force microscopy and interfacial interactions. Journal of Central South University, 2018, 25, 1295-1305.	3.0	11
44	Effect of Dodecane and Oleic Acid on the Attachment between Oxidized Coal and Bubbles. Minerals (Basel, Switzerland), 2018, 8, 29.	2.0	16
45	Interaction Forces between Paraffin/Stearic Acid and Fresh/Oxidized Coal Particles Measured by Atomic Force Microscopy. Energy & Samp; Fuels, 2017, 31, 3305-3312.	5.1	52
46	Recent experimental advances for understanding bubble-particle attachment in flotation. Advances in Colloid and Interface Science, 2017, 246, 105-132.	14.7	196
47	The hydrophobic force for bubble–particle attachment in flotation – a brief review. Physical Chemistry Chemical Physics, 2017, 19, 24421-24435.	2.8	52
48	Effect of Ultrasonic Pretreatment on Oxidized Coal Flotation. Energy & Samp; Fuels, 2017, 31, 14367-14373.	5.1	53
49	Effect of compound collector and blending frother on froth stability and flotation performance of oxidized coal. Powder Technology, 2017, 305, 166-173.	4.2	84
50	Intensification mechanism of oxidized coal flotation by using oxygen-containing collector \hat{l}_{\pm} -furanacrylic acid. Powder Technology, 2017, 305, 109-116.	4.2	94
51	Clean low-rank-coal purification technique combining cyclonic-static microbubble flotation column with collector emulsification. Journal of Cleaner Production, 2017, 153, 657-672.	9.3	108
52	Interaction forces between coal and kaolinite particles measured by atomic force microscopy. Powder Technology, 2016, 301, 349-355.	4.2	88
53	Flotation of a new chelate collector on fine refractory iron ore-containing carbonate. Journal of Central South University, 2016, 23, 1058-1065.	3.0	9
54	The Effect of Power Input on the Fine Coal Flotation Rate Constant. International Journal of Coal Preparation and Utilization, 2015, 35, 176-188.	2.1	4

Хіанниі Сиі

#	Article	IF	CITATION
55	Process intensification of fine coal separation using two-stage flotation column. Journal of Central South University, 2013, 20, 3648-3659.	3.0	7
56	Effects of energy input on the laboratory column flotation of fine coal. Separation Science and Technology, 0, , 150623131352004.	2.5	5
57	Effect of Calcium Ion on Coal Flotation in the Presence of Kaolinite Clay. Energy &	5.1	7