Paul Dupree

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2045776/publications.pdf

Version: 2024-02-01

179 papers 18,903 citations

76 h-index 132 g-index

205 all docs 205 docs citations

205 times ranked 16199 citing authors

#	Article	IF	CITATIONS
1	Hydroxycinnamic acidâ€modified xylan side chains and their crossâ€linking products in rice cell walls are reduced in the <i>Xylosyl arabinosyl substitution of xylan 1</i> mutant. Plant Journal, 2022, 109, 1152-1167.	5.7	18
2	Acetylated Xylan Degradation by Glycoside Hydrolase Family 10 and 11 Xylanases from the White-rot Fungus & lt;i> Phanerochaete chrysosporium. Journal of Applied Glycoscience (1999), 2022, 69, 35-43.	0.7	7
3	Golgi-localized putative S-adenosyl methionine transporters required for plant cell wall polysaccharide methylation. Nature Plants, 2022, 8, 656-669.	9.3	23
4	The structure of EXTL3 helps to explain the different roles of bi-domain exostosins in heparan sulfate synthesis. Nature Communications, 2022, 13, .	12.8	14
5	Functional metagenomic screening identifies an unexpected \hat{l}^2 -glucuronidase. Nature Chemical Biology, 2022, 18, 1096-1103.	8.0	16
6	Plant cell wall architecture guided design of CBM3-GH11 chimeras with enhanced xylanase activity using a tandem repeat left-handed \hat{l}^2 -3-prism scaffold. Computational and Structural Biotechnology Journal, 2021, 19, 1108-1118.	4.1	6
7	Spontaneous rearrangement of acetylated xylan on hydrophilic cellulose surfaces. Cellulose, 2021, 28, 3327-3345.	4.9	14
8	The $\langle i \rangle$ Arabidopsis thaliana $\langle i \rangle$ nucleotide sugar transporter GONST2 is a functional homolog of GONST1. Plant Direct, 2021, 5, e00309.	1.9	7
9	Xylan Structure and Dynamics in Native <i>Brachypodium</i> Grass Cell Walls Investigated by Solid-State NMR Spectroscopy. ACS Omega, 2021, 6, 15460-15471.	3.5	19
10	Unlocking the structural features for the xylobiohydrolase activity of an unusual GH11 member identified in a compostâ€derived consortium. Biotechnology and Bioengineering, 2021, 118, 4052-4064.	3.3	5
11	Two conifer GUX clades are responsible for distinct glucuronic acid patterns on xylan. New Phytologist, 2021, 231, 1720-1733.	7.3	13
12	Galactoglucomannan structure of Arabidopsis seedâ€coat mucilage in <scp>GDP</scp> â€mannose synthesis impaired mutants. Physiologia Plantarum, 2021, 173, 1244-1252.	5.2	9
13	Scission of Glucosidic Bonds by a <i>Lentinus similis</i> Lytic Polysaccharide Monooxygenases Is Strictly Dependent on H ₂ O ₂ while the Oxidation of Saccharide Products Depends on O ₂ . ACS Catalysis, 2021, 11, 13848-13859.	11.2	17
14	Characterisation of the enzyme transport path between shipworms and their bacterial symbionts. BMC Biology, 2021, 19, 233.	3.8	8
15	Importance of Water in Maintaining Softwood Secondary Cell Wall Nanostructure. Biomacromolecules, 2021, 22, 4669-4680.	5.4	29
16	Vascular Plants Are Globally Significant Contributors to Marine Carbon Fluxes and Sinks. Annual Review of Marine Science, 2020, 12, 469-497.	11.6	50
17	BdGT43B2 functions in xylan biosynthesis and is essential for seedling survival in <i>Brachypodium distachyon</i> . Plant Direct, 2020, 4, e00216.	1.9	10
18	Calcium Binding by Arabinogalactan Polysaccharides Is Important for Normal Plant Development. Plant Cell, 2020, 32, 3346-3369.	6.6	65

#	Article	IF	Citations
19	Oligosaccharide Binding and Thermostability of Two Related AA9 Lytic Polysaccharide Monooxygenases. Biochemistry, 2020, 59, 3347-3358.	2.5	17
20	Loss of TalRX9b gene function in wheat decreases chain length and amount of arabinoxylan in grain but increases crossâ€inking. Plant Biotechnology Journal, 2020, 18, 2316-2327.	8.3	16
21	Cell wall remodeling under salt stress: Insights into changes in polysaccharides, feruloylation, lignification, and phenolic metabolism in maize. Plant, Cell and Environment, 2020, 43, 2172-2191.	5.7	79
22	Three Decades of Advances in Arabinogalactan-Protein Biosynthesis. Frontiers in Plant Science, 2020, 11, 610377.	3.6	76
23	Carbohydrate Gel Electrophoresis. Methods in Molecular Biology, 2020, 2149, 33-44.	0.9	0
24	Molecular architecture of softwood revealed by solid-state NMR. Nature Communications, 2019, 10, 4978.	12.8	157
25	Structural Imaging of Native Cryo-Preserved Secondary Cell Walls Reveals the Presence of Macrofibrils and Their Formation Requires Normal Cellulose, Lignin and Xylan Biosynthesis. Frontiers in Plant Science, 2019, 10, 1398.	3.6	40
26	Correlative FLIM-confocal-Raman mapping applied to plant lignin composition and autofluorescence. Micron, 2019, 126, 102733.	2.2	11
27	Development of an oligosaccharide library to characterise the structural variation in glucuronoarabinoxylan in the cell walls of vegetative tissues in grasses. Biotechnology for Biofuels, 2019, 12, 109.	6.2	26
28	An engineered GH1 \hat{I}^2 -glucosidase displays enhanced glucose tolerance and increased sugar release from lignocellulosic materials. Scientific Reports, 2019, 9, 4903.	3.3	36
29	Two members of the <scp>DUF</scp> 579 family are responsible for arabinogalactan methylation in Arabidopsis. Plant Direct, 2019, 3, e00117.	1.9	23
30	Covalent interactions between lignin and hemicelluloses in plant secondary cell walls. Current Opinion in Biotechnology, 2019, 56, 97-104.	6.6	208
31	Water deficit and abscisic acid treatments increase the expression of a glucomannan mannosyltransferase gene (GMMT) in Aloe vera Burm. F Phytochemistry, 2019, 159, 90-101.	2.9	7
32	An ancient family of lytic polysaccharide monooxygenases with roles in arthropod development and biomass digestion. Nature Communications, 2018, 9, 756.	12.8	192
33	Identification of an algal xylan synthase indicates that there is functional orthology between algal and plant cell wall biosynthesis. New Phytologist, 2018, 218, 1049-1060.	7. 3	67
34	Hemocyanin facilitates lignocellulose digestion by wood-boring marine crustaceans. Nature Communications, 2018, 9, 5125.	12.8	29
35	The Patterned Structure of Galactoglucomannan Suggests It May Bind to Cellulose in Seed Mucilage. Plant Physiology, 2018, 178, 1011-1026.	4.8	62
36	A surface endogalactanase in Bacteroides thetaiotaomicron confers keystone status for arabinogalactan degradation. Nature Microbiology, 2018, 3, 1314-1326.	13.3	103

#	Article	IF	CITATIONS
37	A Transcriptomic Analysis of Xylan Mutants Does Not Support the Existence of a Secondary Cell Wall Integrity System in Arabidopsis. Frontiers in Plant Science, 2018, 9, 384.	3.6	26
38	Characterization of a \hat{l}^2 -galactosidase from Bacillus subtilis with transgalactosylation activity. International Journal of Biological Macromolecules, 2018, 120, 279-287.	7.5	24
39	Structure determination of lytic polysaccharide monooxygenases interactions with substrate. Acta Crystallographica Section A: Foundations and Advances, 2018, 74, e36-e36.	0.1	0
40	UUAT1 Is a Golgi-Localized UDP-Uronic Acid Transporter That Modulates the Polysaccharide Composition of Arabidopsis Seed Mucilage. Plant Cell, 2017, 29, 129-143.	6.6	60
41	Effects of Xylan Side-Chain Substitutions on Xylan–Cellulose Interactions and Implications for Thermal Pretreatment of Cellulosic Biomass. Biomacromolecules, 2017, 18, 1311-1321.	5.4	64
42	An even pattern of xylan substitution is critical for interaction with cellulose in plant cell walls. Nature Plants, 2017, 3, 859-865.	9.3	204
43	Structural and electronic determinants of lytic polysaccharide monooxygenase reactivity on polysaccharide substrates. Nature Communications, 2017, 8, 1064.	12.8	134
44	The wood from the trees: The use of timber in construction. Renewable and Sustainable Energy Reviews, 2017, 68, 333-359.	16.4	721
45	Removal of glucuronic acid from xylan is a strategy to improve the conversion of plant biomass to sugars for bioenergy. Biotechnology for Biofuels, 2017, 10, 224.	6.2	57
46	Structural Modifications of Fructans in Aloe barbadensis Miller (Aloe Vera) Grown under Water Stress. PLoS ONE, 2016, 11, e0159819.	2.5	38
47	Folding of xylan onto cellulose fibrils in plant cell walls revealed by solid-state NMR. Nature Communications, 2016, 7, 13902.	12.8	287
48	Xylan decoration patterns and the plant secondary cell wall molecular architecture. Biochemical Society Transactions, 2016, 44, 74-78.	3.4	75
49	Evolution of Xylan Substitution Patterns in Gymnosperms and Angiosperms: Implications for Xylan Interaction with Cellulose. Plant Physiology, 2016, 171, 2418-2431.	4.8	134
50	Golgi-localized STELLO proteins regulate the assembly and trafficking of cellulose synthase complexes in Arabidopsis. Nature Communications, 2016, 7, 11656.	12.8	110
51	An efficient arabinoxylan-debranching \hat{l} ±- l -arabinofuranosidase of family GH62 from Aspergillus nidulans contains a secondary carbohydrate binding site. Applied Microbiology and Biotechnology, 2016, 100, 6265-6277.	3.6	23
52	The molecular basis of polysaccharide cleavage by lytic polysaccharide monooxygenases. Nature Chemical Biology, 2016, 12, 298-303.	8.0	264
53	An unusual xylan in Arabidopsis primary cell walls is synthesised by <scp>GUX</scp> 3, <scp>IRX</scp> 9L, <scp>IRX</scp> 10L and <scp>IRX</scp> 14. Plant Journal, 2015, 83, 413-426.	5.7	77
54	Action of an endo- \hat{l}^2 -1,3(4)-glucanase on cellobiosyl unit structure in barley \hat{l}^2 -1,3:1,4-glucan. Bioscience, Biotechnology and Biochemistry, 2015, 79, 1810-1817.	1.3	12

#	Article	IF	CITATIONS
55	KONJAC1 and 2 Are Key Factors for GDP-Mannose Generation and Affect l-Ascorbic Acid and Glucomannan Biosynthesis in Arabidopsis. Plant Cell, 2015, 27, 3397-3409.	6.6	48
56	Lignocellulose degradation mechanisms across the Tree of Life. Current Opinion in Chemical Biology, 2015, 29, 108-119.	6.1	478
57	Structure and boosting activity of a starch-degrading lytic polysaccharide monooxygenase. Nature Communications, 2015, 6, 5961.	12.8	254
58	l-Fucose-containing arabinogalactan-protein in radish leaves. Carbohydrate Research, 2015, 415, 1-11.	2.3	25
59	Glycan complexity dictates microbial resource allocation in the large intestine. Nature Communications, 2015, 6, 7481.	12.8	328
60	Probing the Molecular Architecture of <i>Arabidopsis thaliana</i> Secondary Cell Walls Using Two-and Three-Dimensional ¹³ C Solid State Nuclear Magnetic Resonance Spectroscopy. Biochemistry, 2015, 54, 2335-2345.	2.5	69
61	Monoclonal antibodies indicate low-abundance links between heteroxylan and other glycans of plant cell walls. Planta, 2015, 242, 1321-1334.	3.2	53
62	Aspen tension wood fibers contain \hat{l}^2 -(1 \hat{a} †'4)-galactans and acidic arabinogalactans retained by cellulose microfibrils in gelatinous walls. Plant Physiology, 2015, 169, pp.00690.2015.	4.8	86
63	Suppression of xylan endotransglycosylase <i>PtxtXyn10A</i> affects cellulose microfibril angle in secondary wall in aspen wood. New Phytologist, 2015, 205, 666-681.	7.3	66
64	Evidence That GH115 α-Glucuronidase Activity, Which Is Required to Degrade Plant Biomass, Is Dependent on Conformational Flexibility. Journal of Biological Chemistry, 2014, 289, 53-64.	3.4	63
65	The Golgi localized bifunctional UDP-rhamnose/UDP-galactose transporter family of <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 11563-11568.	7.1	113
66	Enzymatic fragmentation of carbohydrate moieties of radish arabinogalactan-protein and elucidation of the structures. Bioscience, Biotechnology and Biochemistry, 2014, 78, 818-831.	1.3	26
67	The pattern of xylan acetylation suggests xylan may interact with cellulose microfibrils as a twofold helical screw in the secondary plant cell wall of <i>Arabidopsis thaliana</i> . Plant Journal, 2014, 79, 492-506.	5.7	243
68	Secondary cell wall composition and candidate gene expression in developing willow (Salix purpurea) stems. Planta, 2014, 239, 1041-1053.	3.2	8
69	The role of carbon starvation in the induction of enzymes that degrade plant-derived carbohydrates in Aspergillus niger. Fungal Genetics and Biology, 2014, 72, 34-47.	2.1	95
70	Identification of a Sphingolipid α-Glucuronosyltransferase That Is Essential for Pollen Function in <i>Arabidopsis</i> Plant Cell, 2014, 26, 3314-3325.	6.6	80
71	Label-Free Protein Quantification for Plant Golgi Protein Localization and Abundance. Plant Physiology, 2014, 166, 1033-1043.	4.8	48
72	Characterisation of FUT4 and FUT6 \hat{l} ±-($1\hat{a}$ †'2)-Fucosyltransferases Reveals that Absence of Root Arabinogalactan Fucosylation Increases Arabidopsis Root Growth Salt Sensitivity. PLoS ONE, 2014, 9, e93291.	2.5	59

#	Article	IF	CITATIONS
73	Lignin biosynthesis perturbations affect secondary cell wall composition and saccharification yield in Arabidopsis thaliana. Biotechnology for Biofuels, 2013, 6, 46.	6.2	251
74	Secondary cell wall characterization in a BY-2 inductive system. Plant Cell, Tissue and Organ Culture, 2013, 115, 223-232.	2.3	11
75	Identification of an additional protein involved in mannan biosynthesis. Plant Journal, 2013, 73, 105-117.	5.7	45
76	A proteomic approach identifies many novel palmitoylated proteins in <scp>A</scp> rabidopsis. New Phytologist, 2013, 197, 805-814.	7.3	135
77	Development and application of a high throughput carbohydrate profiling technique for analyzing plant cell wall polysaccharides and carbohydrate active enzymes. Biotechnology for Biofuels, 2013, 6, 94.	6.2	36
78	A galactosyltransferase acting on arabinogalactan protein glycans is essential for embryo development in <scp>A</scp> rabidopsis. Plant Journal, 2013, 76, 128-137.	5.7	80
79	Abnormal Glycosphingolipid Mannosylation Triggers Salicylic Acid–Mediated Responses in <i>Arabidopsis</i> À Â. Plant Cell, 2013, 25, 1881-1894.	6.6	92
80	A β–glucuronosyltransferase from <i><scp>A</scp>rabidopsis thaliana</i> involved in biosynthesis of typeÂ <scp>II</scp> arabinogalactan has a role in cell elongation during seedling growth. Plant Journal, 2013, 76, 1016-1029.	5.7	84
81	Palmitoylation in plants. Plant Signaling and Behavior, 2013, 8, e25209.	2.4	15
82	\hat{l}^2 -Galactosyl Yariv Reagent Binds to the \hat{l}^2 -1,3-Galactan of Arabinogalactan Proteins \hat{A} \hat{A} . Plant Physiology, 2013, 161, 1117-1126.	4.8	142
83	<scp>GUX</scp> 1 and <scp>GUX</scp> 2 glucuronyltransferases decorate distinct domains of glucuronoxylan with different substitution patterns. Plant Journal, 2013, 74, 423-434.	5.7	169
84	Structural Characterization of Arabidopsis Leaf Arabinogalactan Polysaccharides Â. Plant Physiology, 2012, 160, 653-666.	4.8	132
85	Putative Glycosyltransferases and Other Plant Golgi Apparatus Proteins Are Revealed by LOPIT Proteomics Â. Plant Physiology, 2012, 160, 1037-1051.	4.8	149
86	Glycosyl transferases in family 61 mediate arabinofuranosyl transfer onto xylan in grasses. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 989-993.	7.1	263
87	Studies of Enzymatic Cleavage of Cellulose Using Polysaccharide Analysis by Carbohydrate gel Electrophoresis (PACE). Methods in Enzymology, 2012, 510, 51-67.	1.0	12
88	Determination of the <i>N</i> -Glycosylation Patterns of Seed Proteins: Applications To Determine the Authenticity and Substantial Equivalence of Genetically Modified (GM) Crops. Journal of Agricultural and Food Chemistry, 2011, 59, 8779-8788.	5.2	12
89	Insights into the oxidative degradation of cellulose by a copper metalloenzyme that exploits biomass components. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 15079-15084.	7.1	861
90	Arabidopsis genes <i>IRREGULAR XYLEM</i> (<i>IRX15</i>) and <i>IRX15L</i> encode DUF579â€containing proteins that are essential for normal xylan deposition in the secondary cell wall. Plant Journal, 2011, 66, 401-413.	5.7	134

#	Article	IF	Citations
91	Carbohydrate Gel Electrophoresis. Methods in Molecular Biology, 2011, 715, 81-92.	0.9	9
92	Proteomic Complex Detection using Sedimentation (ProCoDeS): screening for proteins in stable complexes and their candidate interaction partners. Biochemical Society Transactions, 2010, 38, 923-927.	3.4	2
93	The environmental and economic sustainability of potential bioethanol from willow in the UK. Bioresource Technology, 2010, 101, 9612-9623.	9.6	66
94	Carbohydrate structural analysis of wheat flour arabinogalactan protein. Carbohydrate Research, 2010, 345, 2648-2656.	2.3	101
95	Absence of branches from xylan in Arabidopsis <i>gux</i> mutants reveals potential for simplification of lignocellulosic biomass. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 17409-17414.	7.1	283
96	Phylogenetic and Biochemical Evidence Supports the Recruitment of an ADP-Glucose Translocator for the Export of Photosynthate during Plastid Endosymbiosis. Molecular Biology and Evolution, 2010, 27, 2691-2701.	8.9	40
97	VASCULAR-RELATED NAC-DOMAIN6 and VASCULAR-RELATED NAC-DOMAIN7 Effectively Induce Transdifferentiation into Xylem Vessel Elements under Control of an Induction System A. Plant Physiology, 2010, 153, 906-914.	4.8	250
98	Chemical and in situ characterization of macromolecular components of the cell walls from the green seaweed Codium fragile. Glycobiology, 2009, 19, 212-228.	2.5	99
99	Characterization of IRX10 and IRX10â€like reveals an essential role in glucuronoxylan biosynthesis in Arabidopsis. Plant Journal, 2009, 57, 732-746.	5.7	279
100	Cell wall glucomannan in Arabidopsis is synthesised by CSLA glycosyltransferases, and influences the progression of embryogenesis. Plant Journal, 2009, 60, 527-538.	5.7	180
101	Modification of plant cell wall sugar composition for biorefining and bioenergy. New Biotechnology, 2009, 25, S246-S247.	4.4	0
102	Subâ€cellular localization of membrane proteins. Proteomics, 2008, 8, 3991-4011.	2.2	71
103	Oligosaccharide relative quantitation using isotope tagging and normalâ€phase liquid chromatography/mass spectrometry. Rapid Communications in Mass Spectrometry, 2008, 22, 2723-2730.	1.5	45
104	ECA3, a Golgi-Localized P2A-Type ATPase, Plays a Crucial Role in Manganese Nutrition in Arabidopsis. Plant Physiology, 2008, 146, 116-128.	4.8	155
105	UDP-Glucose 4-Epimerase Isoforms UGE2 and UGE4 Cooperate in Providing UDP-Galactose for Cell Wall Biosynthesis and Growth of Arabidopsis thaliana. Plant Cell, 2007, 19, 1565-1579.	6.6	133
106	The ectopically parting cells 1-2 (epc1-2) mutant exhibits an exaggerated response to abscisic acid. Journal of Experimental Botany, 2007, 58, 1813-1823.	4.8	16
107	A Novel Bioinformatics Approach Identifies Candidate Genes for the Synthesis and Feruloylation of Arabinoxylan. Plant Physiology, 2007, 144, 43-53.	4.8	181
108	Proteomic Complex Detection Using Sedimentation. Analytical Chemistry, 2007, 79, 2078-2083.	6.5	28

#	Article	IF	Citations
109	Structure elucidation of arabinoxylan isomers by normal phase HPLC–MALDI-TOF/TOF-MS/MS. Carbohydrate Research, 2007, 342, 724-735.	2.3	93
110	Comparison of five xylan synthesis mutants reveals new insight into the mechanisms of xylan synthesis. Plant Journal, 2007, 52, 1154-1168.	5.7	338
111	Plant organelle proteomics. Current Opinion in Plant Biology, 2007, 10, 594-599.	7.1	49
112	A multifunctional hybrid glycosyl hydrolase discovered in an uncultured microbial consortium from ruminant gut. Applied Microbiology and Biotechnology, 2007, 74, 113-124.	3.6	71
113	Resolution of the structural isomers of partially methylesterified oligogalacturonides by polysaccharide analysis using carbohydrate gel electrophoresis. Glycobiology, 2006, 16, 29-35.	2.5	221
114	Mapping the Arabidopsis organelle proteome. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 6518-6523.	7.1	518
115	Plant endoplasmin supports the protein secretory pathway and has a role in proliferating tissues. Plant Journal, 2006, 48, 657-673.	5.7	56
116	Quantitative proteomic approach to study subcellular localization of membrane proteins. Nature Protocols, 2006, 1, 1778-1789.	12.0	96
117	Enzymatic fingerprinting of Arabidopsis pectic polysaccharides using polysaccharide analysis by carbohydrate gel electrophoresis (PACE). Planta, 2006, 224, 163-174.	3.2	29
118	Deficiency of adenosine kinase activity affects the degree of pectin methyl-esterification in cell walls of Arabidopsis thaliana. Planta, 2006, 224, 1401-1414.	3.2	17
119	Dynamic Response of Prevacuolar Compartments to Brefeldin A in Plant Cells. Plant Physiology, 2006, 142, 1442-1459.	4.8	66
120	Galactoglucomannans Increase Cell Population Density and Alter the Protoxylem/Metaxylem Tracheary Element Ratio in Xylogenic Cultures of Zinnia. Plant Physiology, 2006, 142, 696-709.	4.8	47
121	Methods of quantitative proteomics and their application to plant organelle characterization. Journal of Experimental Botany, 2006, 57, 1493-1499.	4.8	77
122	A unique family of proteins associated with internalized membranes in protein storage vacuoles of the Brassicaceae. Plant Journal, 2005, 41, 429-441.	5.7	40
123	An investigation of pectin methylesterification patterns by two independent methods: capillary electrophoresis and polysaccharide analysis using carbohydrate gel electrophoresis. Carbohydrate Research, 2005, 340, 1193-1199.	2.3	23
124	Diversity of the exoproteome of Fusarium graminearum grown on plant cell wall. Current Genetics, 2005, 48, 366-379.	1.7	128
125	COBRA, an Arabidopsis Extracellular Glycosyl-Phosphatidyl Inositol-Anchored Protein, Specifically Controls Highly Anisotropic Expansion through Its Involvement in Cellulose Microfibril Orientation. Plant Cell, 2005, 17, 1749-1763.	6.6	321
126	Analysis of Detergent-Resistant Membranes in Arabidopsis. Evidence for Plasma Membrane Lipid Rafts. Plant Physiology, 2005, 137, 104-116.	4.8	445

#	Article	IF	Citations
127	SETH1 and SETH2, Two Components of the Glycosylphosphatidylinositol Anchor Biosynthetic Pathway, Are Required for Pollen Germination and Tube Growth in Arabidopsis Â[W]. Plant Cell, 2004, 16, 229-240.	6.6	178
128	Localization of Organelle Proteins by Isotope Tagging (LOPIT). Molecular and Cellular Proteomics, 2004, 3, 1128-1134.	3.8	305
129	Unusual Microbial Xylanases from Insect Guts. Applied and Environmental Microbiology, 2004, 70, 3609-3617.	3.1	154
130	An evolutionary route to xylanase process fitness. Protein Science, 2004, 13, 494-503.	7.6	113
131	Arabidopsis thaliana expresses multiple Golgi-localised nucleotide-sugar transporters related to GONST1. Molecular Genetics and Genomics, 2004, 272, 397-410.	2.1	67
132	The use of isotope-coded affinity tags (ICAT) to study organelle proteomes in Arabidopsis thaliana. Biochemical Society Transactions, 2004, 32, 520-523.	3.4	61
133	Localisation and characterisation of cell wall mannan polysaccharides in Arabidopsis thaliana. Planta, 2003, 218, 27-36.	3.2	120
134	Analysis of methylated and unmethylated polygalacturonic acid structure by polysaccharide analysis using carbohydrate gel electrophoresis. Analytical Biochemistry, 2003, 321, 174-182.	2.4	30
135	Identification of Glycosylphosphatidylinositol-Anchored Proteins in Arabidopsis. A Proteomic and Genomic Analysis. Plant Physiology, 2003, 132, 568-577.	4.8	364
136	Glycosylphosphatidylinositol Lipid Anchoring of Plant Proteins. Sensitive Prediction from Sequence-and Genome-Wide Studies for Arabidopsis and Rice. Plant Physiology, 2003, 133, 1691-1701.	4.8	185
137	The Arabidopsis ppi1 Mutant Is Specifically Defective in the Expression, Chloroplast Import, and Accumulation of Photosynthetic Proteins[W]. Plant Cell, 2003, 15, 1859-1871.	6.6	153
138	AtCSLA7, a Cellulose Synthase-Like Putative Glycosyltransferase, Is Important for Pollen Tube Growth and Embryogenesis in Arabidopsis. Plant Physiology, 2003, 131, 547-557.	4.8	109
139	The modular architecture of Cellvibrio japonicus mannanases in glycoside hydrolase families 5 and 26 points to differences in their role in mannan degradation. Biochemical Journal, 2003, 371, 1027-1043.	3.7	104
140	Prediction of Glycosylphosphatidylinositol-Anchored Proteins in Arabidopsis. A Genomic Analysis: Table I Plant Physiology, 2002, 129, 486-499.	4.8	181
141	GARNet, the Genomic Arabidopsis Resource Network. Trends in Plant Science, 2002, 7, 145-147.	8.8	10
142	Polysaccharide Analysis Using Carbohydrate Gel Electrophoresis: A Method to Study Plant Cell Wall Polysaccharides and Polysaccharide Hydrolases. Analytical Biochemistry, 2002, 300, 53-68.	2.4	167
143	Two-dimensional gel electrophoresis: recent advances in sample preparation, detection and quantitation. Current Opinion in Chemical Biology, 2002, 6, 46-50.	6.1	248
144	Identification and Characterization of GONST1, a Golgi-Localized GDP-Mannose Transporter in Arabidopsis. Plant Cell, 2001, 13, 2283-2295.	6.6	142

#	Article	IF	CITATIONS
145	Identification and Characterization of GONST1, a Golgi-Localized GDP-Mannose Transporter in Arabidopsis. Plant Cell, 2001, 13, 2283.	6.6	О
146	Quantitative and reproducible two-dimensional gel analysis using Phoretix 2D Full. Electrophoresis, 2001, 22, 2075-2085.	2.4	97
147	A proteomic analysis of organelles from Arabidopsis thaliana. Electrophoresis, 2000, 21, 3488-3499.	2.4	128
148	Glycosylphosphatidylinositol-anchored cell-surface proteins from Arabidopsis. Electrophoresis, 1999, 20, 2027-2035.	2.4	136
149	Use of a proteome strategy for tagging proteins present at the plasma membrane. Plant Journal, 1998, 16, 633-641.	5.7	138
150	The plant Golgi apparatus. Biochimica Et Biophysica Acta - Molecular Cell Research, 1998, 1404, 259-270.	4.1	111
151	Targeting of Active Sialyltransferase to the Plant Golgi Apparatus. Plant Cell, 1998, 10, 1759-1768.	6.6	187
152	Plant embryogenesis: Cell division forms a pattern. Current Biology, 1996, 6, 683-685.	3.9	10
153	A Deficiency of the Small GTPase rab8 Inhibits Membrane Traffic in Developing Neurons. Molecular and Cellular Biology, 1995, 15, 918-924.	2.3	92
154	[32] Use of antisense oligonucleotides to study Rab function in Vivo. Methods in Enzymology, 1995, 257, 302-312.	1.0	4
155	Guilty by insolubility - does a protein's detergent insolubility reflect a caveolar location?. Trends in Cell Biology, 1995, 5, 187-189.	7.9	23
156	Isolation of a murine cDNA clone encoding Rab 19, a novel tissue-specific small GTPase. Gene, 1995, 155, 257-260.	2.2	23
157	Co-operative regulation of endocytosis by three RAB5 isoforms. FEBS Letters, 1995, 366, 65-71.	2.8	144
158	Guilt by insolubility - does a protein's detergent insolubility reflect a caveolar location?. Trends in Cell Biology, 1995, 5, 187-189.	7.9	84
159	VIP21-Caveolin, a protein of thetrans-Golgi network and caveolae. FEBS Letters, 1994, 346, 88-91.	2.8	86
160	Isolation of a mouse cDNA encoding Rab23, a small novel GTPase expressed predominantly in the brain. Gene, 1994, 138, 207-211.	2.2	44
161	Chapter 2 Expression of Exogenous Proteins in Mammalian Cells with the Semliki Forest Virus Vector. Methods in Cell Biology, 1994, 43 Pt A, 43-53.	1.1	44
162	Mapping of Ras-related GTP-binding proteins by GTP overlay following two-dimensional gel electrophoresis Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 7874-7878.	7.1	56

#	Article	IF	Citations
163	Cloning and subcellular localization of novel rab proteins reveals polarized and cell type-specific expression. Journal of Cell Science, 1994, 107, 3437-3448.	2.0	93
164	Protein Sorting and Glycolipid-Enriched Detergent-Insoluble Complexes in Epithelial Cells. , 1994, , 107-114.		1
165	Protein transport to the dendritic plasma membrane of cultured neurons is regulated by rab8p Journal of Cell Biology, 1993, 123, 47-55.	5.2	120
166	Caveolae and sorting in the trans-Golgi network of epithelial cells EMBO Journal, 1993, 12, 1597-1605.	7.8	423
167	Compartmentalization of rab Proteins in Mammalian Cells. Handbook of Experimental Pharmacology, 1993, , 423-445.	1.8	2
168	Molecular cloning and subcellular localization of three GTP-binding proteins of the rab subfamily. Journal of Cell Science, 1993, 106, 1249-1261.	2.0	128
169	Caveolae and sorting in the trans-Golgi network of epithelial cells. EMBO Journal, 1993, 12, 1597-605.	7.8	152
170	Molecular cloning and subcellular localization of three GTP-binding proteins of the rab subfamily. Journal of Cell Science, 1993, 106 (Pt 4), 1249-61.	2.0	42
171	VIP21, a 21-kD membrane protein is an integral component of trans-Golgi-network-derived transport vesicles Journal of Cell Biology, 1992, 118, 1003-1014.	5.2	529
172	Sequence of a canine cDNA clone encoding a Ran/TC4 GTP-binding protein. Gene, 1992, 120, 325-326.	2.2	13
173	Internal fragmentation of proteins in polyacrylamide matrices for microsequencing. The Protein Journal, 1992, 11, 356-356.	1.1	2
174	Biogenesis of Cell-surface Polarity in Epithelial Cells and Neurons. Cold Spring Harbor Symposia on Quantitative Biology, 1992, 57, 611-619.	1.1	50
175	Regulation of Expression of the Pea Plastocyanin Gene. , 1992, , 23-29.		0
176	Expression of photosynthesis gene-promoter fusions in leaf epidermal cells of transgenic tobacco plants. Plant Journal, 1991, 1, 115-120.	5.7	37
177	A scaffold-associated DNA region is located downstream of the pea plastocyanin gene Plant Cell, 1991, 3, 1239-1250.	6.6	58
178	A Scaffold-Associated DNA Region Is Located Downstream of the Pea Plastocyanin Gene. Plant Cell, 1991, 3, 1239.	6.6	6
179	Expression of a Pea Gene for Ferredoxin-NADP+ Oxidoreductase in Transgenic Tobacco Plants. , 1990, , 2531-2534.		0