Johannes G P Goossens

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2045092/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Anomalous Terminal Shear Viscosity Behavior of Polycarbonate Nanocomposites Containing Grafted Nanosilica Particles. Nanomaterials, 2021, 11, 1839.	4.1	1
2	Influence of the Solidification Process on the Mechanical Properties of Solid-State Drawn PCL/Sepiolite Nanocomposite Tapes. Fibers, 2020, 8, 70.	4.0	3
3	Rheological properties of bimodal polyethylenes produced with silica nanoparticle supported catalysts. Journal of Applied Polymer Science, 2019, 136, 47577.	2.6	1
4	Tuning PBT vitrimer properties by controlling the dynamics of the adaptable network. Polymer Chemistry, 2019, 10, 136-144.	3.9	55
5	The Influence of Graft Length and Density on Dispersion, Crystallisation and Rheology of Poly(ε-caprolactone)/Silica Nanocomposites. Molecules, 2019, 24, 2106.	3.8	13
6	The effect of polymer molar mass and silica nanoparticles on the rheological and mechanical properties of poly(Î+-caprolactone) nanocomposites. Nanocomposites, 2018, 4, 112-126.	4.2	11
7	The influence of grafting on flow-induced crystallization and rheological properties of poly(ε-caprolactone)/cellulose nanocrystal nanocomposites. Nanocomposites, 2018, 4, 87-101.	4.2	13
8	In Situ Network Formation in PBT Vitrimers via Processingâ€Induced Deprotection Chemistry. Macromolecular Rapid Communications, 2018, 39, e1800356.	3.9	36
9	Bimodal Ultrahigh Molecular Weight Polyethylenes Produced from Supported Catalysts: The Challenge of Using a Combined Catalyst System. Macromolecular Chemistry and Physics, 2017, 218, 1600490.	2.2	10
10	Poly(butylene terephthalate)/Glycerol-based Vitrimers via Solid-State Polymerization. Macromolecules, 2017, 50, 6742-6751.	4.8	104
11	Deformation mechanisms of sub-micrometer thermoplastic vulcanizates obtained by reaction-induced phase separation of miscible poly(ε-caprolactone)/dimethacrylate systems. Soft Matter, 2017, 13, 6905-6912.	2.7	6
12	Cross-Linking of Poly(butylene terephthalate) by Reactive Extrusion Using Zn(II) Epoxy-Vitrimer Chemistry. Macromolecules, 2017, 50, 6117-6127.	4.8	143
13	On clarification of haze in polypropylene. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 865-874.	2.1	17
14	Compatibility and epitaxial crystallization between Poly(ethylene) and Poly(ethylene)-like polyesters. Polymer, 2016, 88, 63-70.	3.8	10
15	Physical aging in polycarbonate nanocomposites containing grafted nanosilica particles: A comparison between enthalpy and yield stress evolution. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 2069-2081.	2.1	17
16	Solid-state drawing of post-consumer isotactic poly(propylene): Effect of melt filtration and carbon black on structural and mechanical properties. Waste Management, 2016, 54, 53-61.	7.4	20
17	Fast cooling of (non)-nucleated virgin and recycled poly(propylenes): Effect of processing conditions on structural and mechanical properties. Thermochimica Acta, 2015, 603, 94-102.	2.7	9
18	Influence of drying procedure on glass transition temperature of PMMA based nanocomposites. Nanocomposites, 2015, 1, 36-45.	4.2	36

789

#	Article	IF	CITATIONS
19	Morphology control of PS-b-PB-b-PMMA/PMMA blends by silica nanoparticles. Polymer Bulletin, 2015, 72, 1025-1037.	3.3	0
20	Block Copolymers of "PE-Like―Poly(pentadecalactone) and Poly(<scp>l</scp> -lactide): Synthesis, Properties, and Compatibilization of Polyethylene/Poly(<scp>l</scp> -lactide) Blends. Macromolecules, 2015, 48, 6909-6921.	4.8	45
21	Morphology and rheological properties of silica-filled poly(carbonate)/poly(methyl methacrylate) blends. Polymer Engineering and Science, 2015, 55, 1951-1959.	3.1	16
22	Co-extruded Multilayer Polymer Films for Photonic Applications. , 2015, , 145-166.		2
23	Assessment of plastic packaging waste: Material origin, methods, properties. Resources, Conservation and Recycling, 2014, 85, 88-97.	10.8	129
24	Solidâ€state drawing of βâ€nucleated polypropylene: Effect of additives on drawability and mechanical properties. Journal of Polymer Science, Part B: Polymer Physics, 2014, 52, 1071-1082.	2.1	14
25	Phase separation in poly(butylene terephthalate)-based materials prepared by solid-state modification. Polymer, 2014, 55, 3801-3810.	3.8	9
26	Polyamideâ€6,6â€based blocky copolyamides obtained by solidâ€state modification. Journal of Polymer Science Part A, 2013, 51, 5118-5129.	2.3	5
27	From Polyethylene to Polyester: Influence of Ester Groups on the Physical Properties. Macromolecules, 2013, 46, 7668-7677.	4.8	72
28	Self-healing systems based on disulfide–thiol exchange reactions. Polymer Chemistry, 2013, 4, 4955.	3.9	383
29	Solid-State Modification of Poly(butylene terephthalate) with a Bio-Based Fatty Acid Dimer Diol Furnishing Copolyesters with Unique Morphologies. Macromolecules, 2013, 46, 3975-3984.	4.8	24
30	The Control of Silica Nanoparticles on the Phase Separation of Poly(methyl) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 2013, 214, 2705-2715.) 307 Td (1 2.2	nethacrylate) 23
31	Polymer crystallization studies under processing-relevant conditions at the SAXS/WAXS DUBBLE beamline at the ESRF. Journal of Applied Crystallography, 2013, 46, 1681-1689.	4.5	111
32	The Influence of the Cooling Rate on the Nucleation Efficiency of Isotactic Poly(propylene) with Bis(3,4â€dimethylbenzylidene)sorbitol. Macromolecular Symposia, 2013, 330, 150-165.	0.7	7
33	Reactive compatibilization of ethylene-co-vinyl acetate/starch blends. Macromolecular Research, 2012, 20, 1054-1062.	2.4	11
34	Tailoring the morphology and properties of poly(lactic acid)/poly(ethylene)â€≺i>coâ€{vinyl) Tj ETQq0 0 0 rgB	T /Oyerloc	k 10 Tf 50 14
35	Toughening of poly(lactic acid) by ethylene-co-vinyl acetate copolymer with different vinyl acetate contents. Furopean Polymer Journal, 2012, 48, 146-154	5.4	192

36Self-Healing Materials Based on Disulfide Links. Macromolecules, 2011, 44, 2536-2541.4.8

JOHANNES G P GOOSSENS

#	Article	IF	CITATIONS
37	High-Resolution Chemical Identification of Polymer Blend Thin Films Using Tip-Enhanced Raman Mapping. Macromolecules, 2011, 44, 2852-2858.	4.8	56
38	Structure development of PMMA/SAN blends in shear flow. Chemical Engineering Science, 2011, 66, 4960-4971.	3.8	8
39	High Resolution Tip Enhanced Raman Mapping on Polymer Thin Films. Macromolecular Symposia, 2011, 305, 73-80.	0.7	2
40	Thermoplastic Vulcanizates Based on Highly Compatible Blends of Isotactic Poly(propylene) and Copolymers of Atactic Poly(propylene) and 5â€Ethylideneâ€2â€norbornene. Macromolecular Chemistry and Physics, 2010, 211, 334-344.	2.2	6
41	Crystallization kinetics and crystalline morphology of poly(εâ€caprolactone) in blends with grafted rubber particles. Journal of Polymer Science, Part B: Polymer Physics, 2010, 48, 1438-1448.	2.1	14
42	Submicrometer Thermoplastic Vulcanizates Obtained by Reaction-Induced Phase Separation of Miscible Poly(Ε-Caprolactone)/Dimethacrylate Systems. Rubber Chemistry and Technology, 2010, 83, 160-180.	1.2	3
43	The rubber particle size to control the properties-processing balance of thermoplastic/cross-linked elastomer blends. Soft Matter, 2010, 6, 1758.	2.7	88
44	Synchrotron Radiation and Polymer Science IV. Synchrotron Radiation News, 2010, 23, 24-24.	0.8	0
45	Characterization of the morphology of co-extruded, thermoplastic/rubber multi-layer tapes. Analytica Chimica Acta, 2009, 654, 11-19.	5.4	10
46	Sub-micrometer thermoplastic vulcanizates obtained by reaction-induced phase separation of miscible mixtures of poly(ethylene) and alkyl methacrylates. European Polymer Journal, 2009, 45, 503-514.	5.4	23
47	Thermoreversible cross-linking of maleated ethylene/propylene copolymersÂwith diamines and amino-alcohols. Polymer, 2008, 49, 1239-1248.	3.8	23
48	Thermoplastic vulcanizates obtained by reaction-induced phase separation: Interplay between phase separation dynamics, final morphology and mechanical properties. Polymer, 2008, 49, 2288-2297.	3.8	29
49	The incorporation of rigid diol monomers into poly(butylene terephthalate) via solidâ€state copolymerization and melt copolymerization. Journal of Polymer Science Part A, 2008, 46, 1203-1217.	2.3	19
50	Thermoreversible covalent crosslinking of maleated ethylene/propylene copolymers with diols. Journal of Polymer Science Part A, 2008, 46, 1810-1825.	2.3	19
51	Strong decrease in viscosity of nanoparticle-filled polymer melts through selective adsorption. Soft Matter, 2008, 4, 1848.	2.7	158
52	Synthesis, Structure, and Properties of Ionic Thermoplastic Elastomers Based on Maleated Ethylene/Propylene Copolymers. Macromolecules, 2008, 41, 5493-5501.	4.8	37
53	Application of FTIR Microscopy in Combinatorial Experimentation on Polymer Blends. Macromolecular Symposia, 2008, 265, 281-289.	0.7	16
54	An FTIR Study on the Solidâ€State Copolymerization of bis(2â€hydroxyethyl)terephthalate and Poly(butylene terephthalate) and the Resulting Copolymers. Macromolecular Symposia, 2008, 265, 290-296.	0.7	6

#	Article	IF	CITATIONS
55	Depolymerization behavior of thermoplastic poly(urethane) (TPU) and its dependence on initial molecular weight. Analytica Chimica Acta, 2007, 604, 69-75.	5.4	14
56	Preparation and characterization of poly(butylene terephthalate)/poly(ethylene terephthalate) copolymers via solid-state and melt polymerization. Journal of Polymer Science Part A, 2007, 45, 882-899.	2.3	25
57	Experimental and computational study on structure development of PMMA/SAN blends. Chemical Engineering Science, 2007, 62, 1825-1837.	3.8	23
58	Thermoreversible Cross-Linking of Maleated Ethylene/Propylene Copolymers Using Hydrogen-Bonding and Ionic Interactions. Macromolecules, 2006, 39, 3441-3449.	4.8	39
59	Synthesis, Characterization and Properties of (Vinyl Triethoxy Silane-grafted PP)/Silica Nanocomposites. Macromolecular Symposia, 2006, 233, 225-234.	0.7	36
60	The microstructure of poly(butylene terephthalate) copolymers via 13C NMR sequence distribution analysis: Solid-state copolymerization versus melt copolymerization. Analytica Chimica Acta, 2006, 557, 19-30.	5.4	21
61	Infrared Monitoring of the Modification of Styrene Acrylonitrile Copolymers with Oxazoline and Its Interfacial Reaction with Acid-Containing Polymers. Macromolecular Symposia, 2005, 230, 59-66.	0.7	1
62	Effect of in situ prepared silica nano-particles on non-isothermal crystallization of polypropylene. Polymer, 2005, 46, 8805-8818.	3.8	203
63	Synthetic aspects and characterization of polypropylene–silica nanocomposites prepared via solid-state modification and sol–gel reactions. Polymer, 2005, 46, 6666-6681.	3.8	66
64	Solid-state modification of isotactic polypropylene (iPP) via grafting of styrene. II. Morphology and melt processing. Journal of Applied Polymer Science, 2005, 97, 575-583.	2.6	12
65	Poly(butylene terephthalate) Copolymers Obtained via Solid-State Polymerization and Melt Polymerization. A Study on the Microstructure via 13C NMR Sequence Distribution. Macromolecules, 2005, 38, 10658-10666.	4.8	30
66	Reaction Kinetics of the Incorporation of 2,2-Bis[4-(2-hydroxyethoxy)phenyl]propane in Poly(butylene) Tj ETQq	0000rgBT	/Overlock 10
67	Evidence of pre-crystalline-order in super-cooled polymer melts revealed from simultaneous dielectric spectroscopy and SAXS. Journal of Non-Crystalline Solids, 2005, 351, 2773-2779.	3.1	44
68	Mechanical Properties of Sorbitol-Clarified Isotactic Polypropylene:  Influence of Additive Concentration on Polymer Structure and Yield Behavior. Macromolecules, 2005, 38, 10461-10465.	4.8	81
69	Nanostructuring of In Situ Formed ABC Triblock Copolymers for Rubber Toughening of Thermoplastics. , 2005, , 331-358.		0
70	The influence of hydrogen bonding on the preparation and mechanical properties of PS-diblock copolymer blends. Journal of Polymer Science, Part B: Polymer Physics, 2004, 42, 2137-2160.	2.1	11
71	Morphology of Zinc-Neutralized Maleated Ethyleneâ^ Propylene Copolymer Ionomers:  Structure of Ionic Aggregates As Studied by X-ray Absorption Spectroscopy, Macromolecules, 2004, 37, 8585-8591.	4.8	21

72Deformation behavior of triblock copolymers based on polystyrene: an FT-IR spectroscopy study.
Macromolecular Symposia, 2004, 205, 85-94.0.718

JOHANNES G P GOOSSENS

#	Article	IF	CITATIONS
73	"(Hot-)Water-Proofâ€; Semiconducting, Platinum-Based Chain Structures: Processing, Products, and Properties. Advanced Materials, 2003, 15, 125-129.	21.0	84
74	Solid-state modification of isotactic polypropylene (iPP) via grafting of styrene. I. Polymerization experiments. Journal of Applied Polymer Science, 2003, 89, 3279-3291.	2.6	37
75	"Controlled―Synthesis and Characterization of Model Methyl Methacrylate/tert-Butyl Methacrylate Triblock Copolymers via ATRP. Macromolecules, 2003, 36, 3051-3060.	4.8	78
76	Morphology of Ethyleneâ^'Propylene Copolymer Based Ionomers as Studied by Solid State NMR and Small Angle X-ray Scattering in Relation to Some Mechanical Properties. Macromolecules, 2003, 36, 1147-1156.	4.8	41
77	Morphology of Neutralized Low Molecular Weight Maleated Ethyleneâ^'Propylene Copolymers (MAn-g-EPM) As Investigated by Small-Angle X-ray Scattering. Macromolecules, 2002, 35, 208-216.	4.8	25
78	Photoinitiated Bulk Polymerization of Liquid Crystalline Thiolene Monomers. Macromolecules, 2002, 35, 8962-8968.	4.8	19
79	Processing of intractable polymers using reactive solvents. 6. A new reactive solvent concept based on reversible depolymerisation. Polymer, 2002, 43, 5699-5708.	3.8	7
80	Compound formation and solvent (dis)ordering in syndiotactic polystyrene/benzylmethacrylate systems. Macromolecular Symposia, 1999, 138, 99-104.	0.7	4
81	Processing of Thermoplastic Polymers Using Reactive Solvents. High Performance Polymers, 1996, 8, 133-167.	1.8	20