
John V Fahy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/204474/publications.pdf Version: 2024-02-01

ΙΟΗΝ V ΕΛΗΥ

#	Article	IF	CITATIONS
1	15LO1 dictates glutathione redox changes in asthmatic airway epithelium to worsen type 2 inflammation. Journal of Clinical Investigation, 2022, 132, .	8.2	45
2	The Precision Interventions for Severe and/or Exacerbation-Prone (PrecISE) Asthma Network: An overview of Network organization, procedures, and interventions. Journal of Allergy and Clinical Immunology, 2022, 149, 488-516.e9.	2.9	24
3	Mucus Plugs Persist in Asthma, and Changes in Mucus Plugs Associate with Changes in Airflow over Time. American Journal of Respiratory and Critical Care Medicine, 2022, 205, 1036-1045.	5.6	39
4	The Mucin Gene <i>MUC5B</i> Is Required for Normal Lung Function. American Journal of Respiratory and Critical Care Medicine, 2022, 205, 737-739.	5.6	3
5	Obesity alters pathology and treatment response in inflammatory disease. Nature, 2022, 604, 337-342.	27.8	93
6	DNA sequencing analysis of cystic fibrosis transmembrane conductance regulator gene identifies cystic fibrosisâ€associated variants in the Severe Asthma Research Program. Pediatric Pulmonology, 2022, 57, 1782-1788.	2.0	3
7	Exploring antiviral and anti-inflammatory effects of thiol drugs in COVID-19. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2022, 323, L372-L389.	2.9	9
8	Genetic analyses identify GSDMB associated with asthma severity, exacerbations, and antiviral pathways. Journal of Allergy and Clinical Immunology, 2021, 147, 894-909.	2.9	50
9	Responsiveness to Parenteral Corticosteroids and Lung Function Trajectory in Adults with Moderate-to-Severe Asthma. American Journal of Respiratory and Critical Care Medicine, 2021, 203, 841-852.	5.6	14
10	Genetic and non-genetic factors affecting the expression of COVID-19-relevant genes in the large airway epithelium. Genome Medicine, 2021, 13, 66.	8.2	21
11	PrecISE: Precision Medicine in Severe Asthma: An adaptive platform trial with biomarker ascertainment. Journal of Allergy and Clinical Immunology, 2021, 147, 1594-1601.	2.9	27
12	Quantitative CT metrics are associated with longitudinal lung function decline and future asthma exacerbations: Results from SARP-3. Journal of Allergy and Clinical Immunology, 2021, 148, 752-762.	2.9	30
13	Estimated Ventricular Size, Asthma Severity,Âand Exacerbations. Chest, 2020, 157, 258-267.	0.8	4
14	Investigation of the relationship between IL-6 and type 2 biomarkers in patients with severe asthma. Journal of Allergy and Clinical Immunology, 2020, 145, 430-433.	2.9	38
15	Severe asthma during childhood and adolescence: AÂlongitudinal study. Journal of Allergy and Clinical Immunology, 2020, 145, 140-146.e9.	2.9	45
16	The Use of a Three-Fluid Atomising Nozzle in the Production of Spray-Dried Theophylline/Salbutamol Sulphate Powders Intended for Pulmonary Delivery. Pharmaceutics, 2020, 12, 1116.	4.5	7
17	Evidence for Exacerbation-Prone Asthma and Predictive Biomarkers of Exacerbation Frequency. American Journal of Respiratory and Critical Care Medicine, 2020, 202, 973-982.	5.6	105
18	<i>HSD3B1</i> genotype identifies glucocorticoid responsiveness in severe asthma. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 2187-2193.	7.1	27

JOHN V FAHY

#	Article	IF	CITATIONS
19	An antiâ€siglecâ€8 antibody depletes sputum eosinophils from asthmatic subjects and inhibits lung mast cells. Clinical and Experimental Allergy, 2020, 50, 904-914.	2.9	24
20	COVID-19–related Genes in Sputum Cells in Asthma. Relationship to Demographic Features and Corticosteroids. American Journal of Respiratory and Critical Care Medicine, 2020, 202, 83-90.	5.6	370
21	Clinical significance of the bronchodilator response in children with severe asthma. Pediatric Pulmonology, 2019, 54, 1694-1703.	2.0	10
22	Making Asthma Crystal Clear. New England Journal of Medicine, 2019, 381, 882-884.	27.0	4
23	The use of hydrophobic amino acids in protecting spray dried trehalose formulations against moisture-induced changes. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 144, 139-153.	4.3	28
24	An Allosteric Anti-tryptase Antibody for the Treatment of Mast Cell-Mediated Severe Asthma. Cell, 2019, 179, 417-431.e19.	28.9	76
25	Mometasone or Tiotropium in Mild Asthma with a Low Sputum Eosinophil Level. New England Journal of Medicine, 2019, 380, 2009-2019.	27.0	95
26	The Cytokines of Asthma. Immunity, 2019, 50, 975-991.	14.3	622
27	Extracellular DNA, Neutrophil Extracellular Traps, and Inflammasome Activation in Severe Asthma. American Journal of Respiratory and Critical Care Medicine, 2019, 199, 1076-1085.	5.6	165
28	Refractory airway type 2 inflammation in a large subgroup of asthmatic patients treated with inhaled corticosteroids. Journal of Allergy and Clinical Immunology, 2019, 143, 104-113.e14.	2.9	135
29	Pruning of the Pulmonary Vasculature in Asthma. The Severe Asthma Research Program (SARP) Cohort. American Journal of Respiratory and Critical Care Medicine, 2018, 198, 39-50.	5.6	51
30	Internet-Based Monitoring in the Severe Asthma Research Program Identifies a Subgroup of Patients With Labile Asthma Control. Chest, 2018, 153, 378-386.	0.8	6
31	After asthma: redefining airways diseases. Lancet, The, 2018, 391, 350-400.	13.7	744
32	Autopsy and Imaging Studies of Mucus in Asthma. Lessons Learned about Disease Mechanisms and the Role of Mucus in Airflow Obstruction. Annals of the American Thoracic Society, 2018, 15, S184-S191.	3.2	40
33	Neutrophil cytoplasts induce T _H 17 differentiation and skew inflammation toward neutrophilia in severe asthma. Science Immunology, 2018, 3, .	11.9	157
34	Effects of endogenous sex hormones on lung function and symptom control in adolescents with asthma. BMC Pulmonary Medicine, 2018, 18, 58.	2.0	74
35	Baseline Features of the Severe Asthma Research Program (SARP III) Cohort: Differences with Age. Journal of Allergy and Clinical Immunology: in Practice, 2018, 6, 545-554.e4.	3.8	210
36	Claudin-18 deficiency is associated with airway epithelial barrier dysfunction and asthma. Journal of Allergy and Clinical Immunology, 2017, 139, 72-81.e1.	2.9	108

JOHN V FAHY

#	Article	IF	CITATIONS
37	Natural killer cell–mediated inflammation resolution is disabled in severe asthma. Science Immunology, 2017, 2, .	11.9	76
38	Effects of Age and Disease Severity on Systemic Corticosteroid Responses in Asthma. American Journal of Respiratory and Critical Care Medicine, 2017, 195, 1439-1448.	5.6	87
39	Asthma and corticosteroids: time for a more precise approach to treatment. European Respiratory Journal, 2017, 49, 1701167.	6.7	35
40	ALX receptor ligands define a biochemical endotype for severe asthma. JCI Insight, 2017, 2, .	5.0	29
41	IL1RL1 asthma risk variants regulate airway type 2 inflammation. JCI Insight, 2016, 1, e87871.	5.0	42
42	Mast cells in asthma: biomarker and therapeutic target. European Respiratory Journal, 2016, 47, 1040-1042.	6.7	6
43	Cross-Talk between Epithelial Cells and Type 2 Immune Signaling. The Role of IL-25. American Journal of Respiratory and Critical Care Medicine, 2016, 193, 935-936.	5.6	11
44	Metabolic consequences of obesity as an "outside in―mechanism of disease severity in asthma. European Respiratory Journal, 2016, 48, 291-293.	6.7	25
45	Alternative splicing of interleukin-33 and type 2 inflammation in asthma. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 8765-8770.	7.1	139
46	Abnormalities in MUC5AC and MUC5B Protein in Airway Mucus in Asthma. American Journal of Respiratory and Critical Care Medicine, 2016, 194, 1296-1299.	5.6	112
47	Plasma interleukin-6 concentrations, metabolic dysfunction, and asthma severity: a cross-sectional analysis of two cohorts. Lancet Respiratory Medicine,the, 2016, 4, 574-584.	10.7	375
48	FleA Expression in Aspergillus fumigatus Is Recognized by Fucosylated Structures on Mucins and Macrophages to Prevent Lung Infection. PLoS Pathogens, 2016, 12, e1005555.	4.7	44
49	Asthma Was Talking, But We Weren't Listening. Missed or Ignored Signals That Have Slowed Treatment Progress. Annals of the American Thoracic Society, 2016, 13 Suppl 1, S78-82.	3.2	4
50	Oxidation increases mucin polymer cross-links to stiffen airway mucus gels. Science Translational Medicine, 2015, 7, 276ra27.	12.4	199
51	Future Research Directions in Asthma. An NHLBI Working Group Report. American Journal of Respiratory and Critical Care Medicine, 2015, 192, 1366-1372.	5.6	84
52	Type 2 inflammation in asthma — present in most, absent in many. Nature Reviews Immunology, 2015, 15, 57-65.	22.7	1,173
53	Accumulation of BDCA1+ Dendritic Cells in Interstitial Fibrotic Lung Diseases and Th2-High Asthma. PLoS ONE, 2014, 9, e99084.	2.5	34
54	Asthma and the flu: a tricky twoâ€ s tep. Immunology and Cell Biology, 2014, 92, 389-391.	2.3	3

JOHN V FAHY

#	Article	IF	CITATIONS
55	Measures of gene expression in sputum cells can identify TH2-high and TH2-low subtypes of asthma. Journal of Allergy and Clinical Immunology, 2014, 133, 388-394.e5.	2.9	282
56	A microRNA upregulated in asthma airway T cells promotes TH2 cytokine production. Nature Immunology, 2014, 15, 1162-1170.	14.5	207
57	Intelectin-1 Is a Prominent Protein Constituent of Pathologic Mucus Associated with Eosinophilic Airway Inflammation in Asthma. American Journal of Respiratory and Critical Care Medicine, 2014, 189, 1005-1007.	5.6	35
58	Chair's Summary: Mechanisms of Relevance to Clinical Heterogeneity of Asthma and Chronic Obstructive Pulmonary Disease. Annals of the American Thoracic Society, 2013, 10, S108-S108.	3.2	1
59	A Large Subgroup of Mild-to-Moderate Asthma Is Persistently Noneosinophilic. American Journal of Respiratory and Critical Care Medicine, 2012, 185, 612-619.	5.6	434
60	Airway Mucus Function and Dysfunction. New England Journal of Medicine, 2010, 363, 2233-2247.	27.0	1,753
61	T-helper Type 2–driven Inflammation Defines Major Subphenotypes of Asthma. American Journal of Respiratory and Critical Care Medicine, 2009, 180, 388-395.	5.6	1,547
62	<i>Ex Vivo</i> Sputum Analysis Reveals Impairment of Protease-dependent Mucus Degradation by Plasma Proteins in Acute Asthma. American Journal of Respiratory and Critical Care Medicine, 2009, 180, 203-210.	5.6	104
63	Anti-IgE: Lessons learned from effects on airway inflammation and asthma exacerbation. Journal of Allergy and Clinical Immunology, 2006, 117, 1230-1232.	2.9	30
64	Goblet Cell and Mucin Gene Abnormalities in Asthma*. Chest, 2002, 122, 320S-326S.	0.8	151
65	Histopathology of fatal asthma: Drowning in mucus. Pediatric Pulmonology, 2001, 32, 88-89.	2.0	6
66	A safe, simple, standardized method should be used for sputum induction for research purposes. Clinical and Experimental Allergy, 1998, 28, 1047-1049.	2.9	17