Richard A Miller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2044008/publications.pdf

Version: 2024-02-01

231 papers

18,753 citations

63 h-index 127 g-index

244 all docs

244 docs citations

times ranked

244

14249 citing authors

#	Article	IF	CITATIONS
1	Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature, 2009, 460, 392-395.	13.7	3,191
2	Rapamycin, But Not Resveratrol or Simvastatin, Extends Life Span of Genetically Heterogeneous Mice. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2011, 66A, 191-201.	1.7	774
3	Methionine-deficient diet extends mouse lifespan, slows immune and lens aging, alters glucose, T4, IGF-I and insulin levels, and increases hepatocyte MIF levels and stress resistance. Aging Cell, 2005, 4, 119-125.	3.0	644
4	Rapamycin slows aging in mice. Aging Cell, 2012, 11, 675-682.	3.0	580
5	mTOR regulates MAPKAPK2 translation to control the senescence-associated secretory phenotype. Nature Cell Biology, 2015, 17, 1205-1217.	4.6	552
6	Rapamycinâ€mediated lifespan increase in mice is dose and sex dependent and metabolically distinct from dietary restriction. Aging Cell, 2014, 13, 468-477.	3.0	486
7	Extending the lifespan of long-lived mice. Nature, 2001, 414, 412-412.	13.7	378
8	Acarbose, 17â€Î±â€estradiol, and nordihydroguaiaretic acid extend mouse lifespan preferentially in males. Aging Cell, 2014, 13, 273-282.	3.0	331
9	Using DNA Methylation Profiling to Evaluate Biological Age and Longevity Interventions. Cell Metabolism, 2017, 25, 954-960.e6.	7.2	314
10	Nordihydroguaiaretic acid and aspirin increase lifespan of genetically heterogeneous male mice. Aging Cell, 2008, 7, 641-650.	3.0	283
11	Longer lifespan in male mice treated with a weakly estrogenic agonist, an antioxidant, an αâ€glucosidase inhibitor or a Nrf2â€inducer. Aging Cell, 2016, 15, 872-884.	3.0	277
12	Pgp-1hi T lymphocytes accumulate with age in mice and respond poorly to concanavalin A. European Journal of Immunology, 1989, 19, 977-982.	1.6	273
13	Reduced Expression of MYC Increases Longevity and Enhances Healthspan. Cell, 2015, 160, 477-488.	13.5	238
14	Life-Span Extension in Mice by Preweaning Food Restriction and by Methionine Restriction in Middle Age. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2009, 64A, 711-722.	1.7	229
15	Fibroblast cell lines from young adult mice of long-lived mutant strains are resistant to multiple forms of stress. American Journal of Physiology - Endocrinology and Metabolism, 2005, 289, E23-E29.	1.8	224
16	Changes in the gut microbiome and fermentation products concurrent with enhanced longevity in acarbose-treated mice. BMC Microbiology, 2019, 19, 130.	1.3	218
17	Longer Life Spans and Delayed Maturation in Wild-Derived Mice. Experimental Biology and Medicine, 2002, 227, 500-508.	1.1	213
18	Multiplex stress resistance in cells from longâ€lived dwarf mice. FASEB Journal, 2003, 17, 1565-1576.	0.2	200

#	Article	IF	CITATIONS
19	Big mice die young: early life body weight predicts longevity in genetically heterogeneous mice. Aging Cell, 2002, 1, 22-29.	3.0	197
20	Evaluation of Resveratrol, Green Tea Extract, Curcumin, Oxaloacetic Acid, and Medium-Chain Triglyceride Oil on Life Span of Genetically Heterogeneous Mice. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2013, 68, 6-16.	1.7	182
21	An aging Interventions Testing Program: study design and interim report. Aging Cell, 2007, 6, 565-575.	3.0	177
22	Diverse interventions that extend mouse lifespan suppress shared age-associated epigenetic changes at critical gene regulatory regions. Genome Biology, 2017, 18, 58.	3.8	147
23	Diminished calcium influx in lectin-stimulated T cells from old mice. Journal of Cellular Physiology, 1987, 132, 337-342.	2.0	136
24	Early activation defects in T lymphocytes from aged mice. Immunological Reviews, 1997, 160, 79-90.	2.8	136
25	Hormone-Treated Snell Dwarf Mice Regain Fertility But Remain Long Lived and Disease Resistant. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2004, 59, 1244-1250.	1.7	135
26	Skin-derived fibroblasts from long-lived species are resistant to some, but not all, lethal stresses and to the mitochondrial inhibitor rotenone. Aging Cell, 2007, 6, 1-13.	3.0	135
27	Extending Life: Scientific Prospects and Political Obstacles. Milbank Quarterly, 2002, 80, 155-174.	2.1	130
28	Age-Dependent Alterations in the Assembly of Signal Transduction Complexes at the Site of T Cell/APC Interaction. Journal of Immunology, 2000, 165, 1243-1251.	0.4	129
29	Liver-Specific GH Receptor Gene-Disrupted (LiGHRKO) Mice Have Decreased Endocrine IGF-I, Increased Local IGF-I, and Altered Body Size, Body Composition, and Adipokine Profiles. Endocrinology, 2014, 155, 1793-1805.	1.4	125
30	Early life growth hormone treatment shortens longevity and decreases cellular stress resistance in long-lived mutant mice. FASEB Journal, 2010, 24, 5073-5079.	0.2	124
31	Nrf2 Signaling, a Mechanism for Cellular Stress Resistance in Long-Lived Mice. Molecular and Cellular Biology, 2010, 30, 871-884.	1.1	123
32	New model of health promotion and disease prevention for the 21st century. BMJ: British Medical Journal, 2008, 337, a399-a399.	2.4	121
33	Single-Cell Analyses Reveal Two Defects in Peptide-Specific Activation of Naive T Cells from Aged Mice. Journal of Immunology, 2001, 166, 3151-3157.	0.4	117
34	Effect of aging on T lymphocyte activation. Vaccine, 2000, 18, 1654-1660.	1.7	114
35	Identification and Application of Gene Expression Signatures Associated with Lifespan Extension. Cell Metabolism, 2019, 30, 573-593.e8.	7.2	113
36	Fibroblasts From Naked Mole-Rats Are Resistant to Multiple Forms of Cell Injury, But Sensitive to Peroxide, Ultraviolet Light, and Endoplasmic Reticulum Stress. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2008, 63, 232-241.	1.7	112

#	Article	IF	CITATIONS
37	Gene Expression Patterns in Calorically Restricted Mice: Partial Overlap with Long-Lived Mutant Mice. Molecular Endocrinology, 2002, 16, 2657-2666.	3.7	111
38	Growth hormone action predicts age-related white adipose tissue dysfunction and senescent cell burden in mice. Aging, 2014, 6, 575-586.	1.4	107
39	Organization of the Mammalian Metabolome according to Organ Function, Lineage Specialization, and Longevity. Cell Metabolism, 2015, 22, 332-343.	7.2	104
40	mTORC1 underlies ageâ€related muscle fiber damage and loss by inducing oxidative stress and catabolism. Aging Cell, 2019, 18, e12943.	3.0	104
41	Decline, in aging mice, of the anti-2, 4, 6-trinitrophenyl (TNP) cytotoxic T cell response attributable to loss of Lyt-2â^², interleukin 2-producing helper cell function. European Journal of Immunology, 1981, 11, 751-756.	1.6	93
42	Memory T lymphocyte hyporesponsiveness to non-cognate stimuli: a key factor in age-related immunodeficiency. European Journal of Immunology, 1992, 22, 931-935.	1.6	93
43	Acarbose improves health and lifespan in aging HET3 mice. Aging Cell, 2019, 18, e12898.	3.0	90
44	Functional Linkages for the Pace of Life, Life-history, and Environment in Birds. Integrative and Comparative Biology, 2010, 50, 855-868.	0.9	89
45	Mapping ecologically relevant social behaviours by gene knockout in wild mice. Nature Communications, 2014, 5, 4569.	5.8	88
46	'Accelerated aging': a primrose path to insight?. Aging Cell, 2004, 3, 47-51.	3.0	87
47	NIA Interventions Testing Program: Investigating Putative Aging Intervention Agents in a Genetically Heterogeneous Mouse Model. EBioMedicine, 2017, 21, 3-4.	2.7	87
48	Age-Dependent Defects in TCR-Triggered Cytoskeletal Rearrangement in CD4+ T Cells. Journal of Immunology, 2002, 169, 5021-5027.	0.4	85
49	Assessment of Mitochondrial Biogenesis and mTORC1 Signaling During Chronic Rapamycin Feeding in Male and Female Mice. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2013, 68, 1493-1501.	1.7	84
50	Age-associated changes in mitogen-induced protein phosphorylation in murine T lymphocytes. European Journal of Immunology, 1992, 22, 253-260.	1.6	82
51	Activation of genes involved in xenobiotic metabolism is a shared signature of mouse models with extended lifespan. American Journal of Physiology - Endocrinology and Metabolism, 2012, 303, E488-E495.	1.8	82
52	Regulation of mTOR Activity in Snell Dwarf and GH Receptor Gene-Disrupted Mice. Endocrinology, 2015, 156, 565-575.	1.4	77
53	Sex differences in lifespan extension with acarbose and 17â€i± estradiol: gonadal hormones underlie maleâ€specific improvements in glucose tolerance and <scp>mTORC</scp> 2 signaling. Aging Cell, 2017, 16, 1256-1266.	3.0	77
54	Age-related changes in T cell surface markers: a longitudinal analysis in genetically heterogeneous mice. Mechanisms of Ageing and Development, 1997, 96, 181-196.	2.2	76

#	Article	IF	CITATIONS
55	Measures of Healthspan as Indices of Aging in Mice—A Recommendation. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2016, 71, 427-430.	1.7	76
56	Stress resistance and aging: Influence of genes and nutrition. Mechanisms of Ageing and Development, 2006, 127, 687-694.	2.2	7 5
57	Fibroblasts from long-lived bird species are resistant to multiple forms of stress. Journal of Experimental Biology, 2011, 214, 1902-1910.	0.8	7 5
58	Gerontology as oncology. Research on aging as the key to the understanding of cancer. Cancer, 1991, 68, 2496-2501.	2.0	72
59	Signal transduction in the aging immune system. Current Opinion in Immunology, 2005, 17, 486-491.	2.4	72
60	Extended longevity of wild-derived mice is associated with peroxidation-resistant membranes. Mechanisms of Ageing and Development, 2006, 127, 653-657.	2.2	72
61	Hypothalamic-Pituitary Axis Regulates Hydrogen Sulfide Production. Cell Metabolism, 2017, 25, 1320-1333.e5.	7.2	71
62	Growth hormone modulates hypothalamic inflammation in longâ€lived pituitary dwarf mice. Aging Cell, 2015, 14, 1045-1054.	3.0	70
63	Cell culture-based profiling across mammals reveals DNA repair and metabolism as determinants of species longevity. ELife, $2016, 5, \ldots$	2.8	69
64	Discussion. Neurobiology of Aging, 1999, 20, 217-231.	1.5	67
65	Differential Tyrosine Phosphorylation of Zeta Chain Dimers in Mouse CD4 T Lymphocytes: Effect of Age. Cellular Immunology, 1997, 175, 51-57.	1.4	66
66	Antiâ€aging drugs reduce hypothalamic inflammation in a sexâ€specific manner. Aging Cell, 2017, 16, 652-660.	3.0	66
67	CD4 memory T cell levels predict life span in genetically heterogeneous mice. FASEB Journal, 1997, 11, 775-783.	0.2	65
68	The GH/IGF-1 axis in a critical period early in life determines cellular DNA repair capacity by altering transcriptional regulation of DNA repair-related genes: implications for the developmental origins of cancer. GeroScience, 2017, 39, 147-160.	2.1	65
69	Cell Stress and Aging: New Emphasis on Multiplex Resistance Mechanisms. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2009, 64A, 179-182.	1.7	62
70	<scp>ATF</scp> 4 activity: a common feature shared by many kinds of slowâ€aging mice. Aging Cell, 2014, 13, 1012-1018.	3.0	62
71	Lifespan of mice and primates correlates with immunoproteasome expression. Journal of Clinical Investigation, 2015, 125, 2059-2068.	3.9	62
72	Science fact and the SENS agenda. EMBO Reports, 2005, 6, 1006-1008.	2.0	61

#	Article	IF	CITATIONS
73	Rapamycin treatment attenuates age-associated periodontitis in mice. GeroScience, 2017, 39, 457-463.	2.1	61
74	Decline, with age, in the proportion of mouse T cells that express IL-2 receptors after mitogen stimulation. Mechanisms of Ageing and Development, 1986, 33, 313-322.	2.2	60
75	Enteric-delivered rapamycin enhances resistance of aged mice to pneumococcal pneumonia through reduced cellular senescence. Experimental Gerontology, 2012, 47, 958-965.	1.2	60
76	Quantitative Trait Loci for Femoral Size and Shape in a Genetically Heterogeneous Mouse Population. Journal of Bone and Mineral Research, 2003, 18, 1497-1505.	3.1	59
77	Macrophage migration inhibitory factorâ€knockout mice are long lived and respond to caloric restriction. FASEB Journal, 2010, 24, 2436-2442.	0.2	58
78	Altered Composition of the Immunological Synapse in an Anergic, Age-Dependent Memory T Cell Subset. Journal of Immunology, 2000, 164, 6105-6112.	0.4	57
79	Biomarkers of Aging: Prediction of Longevity by Using Age-Sensitive T-Cell Subset Determinations in a Middle-Aged, Genetically Heterogeneous Mouse Population. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2001, 56, B180-B186.	1.7	57
80	Genetic Loci That Influence Cause of Death in a Heterogeneous Mouse Stock. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2004, 59, B977-B983.	1.7	57
81	Defective control of cytoplasmic calcium concentration in T lymphocytes from old mice. Journal of Cellular Physiology, 1989, 138, 175-182.	2.0	56
82	Diminished activation of the MAP kinase pathway in CD3-stimulated T lymphocytes from old mice. Mechanisms of Ageing and Development, 1997, 94, 71-83.	2.2	53
83	Glycine supplementation extends lifespan of male and female mice. Aging Cell, 2019, 18, e12953.	3.0	53
84	<i>Muribaculaceae</i> Genomes Assembled from Metagenomes Suggest Genetic Drivers of Differential Response to Acarbose Treatment in Mice. MSphere, 2021, 6, e0085121.	1.3	53
85	Canagliflozin extends life span in genetically heterogeneous male but not female mice. JCI Insight, 2020, 5, .	2.3	51
86	Age-associated changes in human T cell phenotype and function. Aging Clinical and Experimental Research, 1994, 6, 25-34.	1.4	50
87	Endocrine regulation of heat shock protein mRNA levels in long-lived dwarf mice. Mechanisms of Ageing and Development, 2009, 130, 393-400.	2.2	50
88	T lymphocyte heterogeneity in old and young mice: functional defects in T cells selected for poor calcium signal generation. European Journal of Immunology, 1989, 19, 695-699.	1.6	49
89	Male lifespan extension with 17â€Î± estradiol is linked to a sexâ€specific metabolomic response modulated by gonadal hormones in mice. Aging Cell, 2018, 17, e12786.	3.0	49
90	Rapamycinâ€mediated mouse lifespan extension: Lateâ€life dosage regimes with sexâ€specific effects. Aging Cell, 2020, 19, e13269.	3.0	49

#	Article	IF	CITATIONS
91	Accumulation of hyporesponsive, calcium extruding memory T cells as a key feature of age-dependent immune dysfunction. Clinical Immunology and Immunopathology, 1991, 58, 305-317.	2.1	48
92	mTOR regulates the expression of DNA damage response enzymes in longâ€lived Snell dwarf, GHRKO, and PAPPAâ€KO mice. Aging Cell, 2017, 16, 52-60.	3.0	48
93	17â€aâ€estradiol late in life extends lifespan in aging UMâ€HET3 male mice; nicotinamide riboside and three other drugs do not affect lifespan in either sex. Aging Cell, 2021, 20, e13328.	3.0	48
94	Quantitative Trait Loci That Modulate Femoral Mechanical Properties in a Genetically Heterogeneous Mouse Population. Journal of Bone and Mineral Research, 2004, 19, 1497-1505.	3.1	47
95	Age-associated changes in glycosylation of CD43 and CD45 on mouse CD4 T cells. European Journal of Immunology, 2005, 35, 622-631.	1.6	47
96	Rapid tyrosine phosphorylation of Grb2 and Shc in T cells exposed to anti-CD3, anti-CD4, and anti-CD45 stimuli: differential effects of aging. Mechanisms of Ageing and Development, 1995, 80, 171-187.	2.2	45
97	Mouse (Mus musculus) stocks derived from tropical islands: new models for genetic analysis of life-history traits. Journal of Zoology, 2000, 250, 95-104.	0.8	45
98	Fibroblasts from longâ€lived mutant mice exhibit increased autophagy and lower TOR activity after nutrient deprivation or oxidative stress. Aging Cell, 2012, 11, 668-674.	3.0	45
99	Longâ€lived Snell dwarf mice display increased proteostatic mechanisms that are not dependent on decreased <scp>mTORC </scp> 1 activity. Aging Cell, 2015, 14, 474-482.	3.0	45
100	Analysis of Raf-1 Activation in Response to TCR Activation and Costimulation in Murine T-Lymphocytes: Effect of Age. Cellular Immunology, 1998, 190, 33-42.	1.4	44
101	Gene Expression Profile of Long-Lived Snell Dwarf Mice. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2002, 57, B99-B108.	1.7	44
102	Fibroblasts from long-lived Snell dwarf mice are resistant to oxygen-induced in vitro growth arrest. Aging Cell, 2006, 5, 89-96.	3.0	44
103	Multiple-Trait Quantitative Trait Loci Analysis Using a Large Mouse Sibship. Genetics, 1999, 151, 785-795.	1.2	44
104	Mouse Loci Associated With Life Span Exhibit Sex-Specific and Epistatic Effects. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2002, 57, B9-B15.	1.7	43
105	Body weight, hormones and T cell subsets as predictors of life span in genetically heterogeneous mice. Mechanisms of Ageing and Development, 2004, 125, 381-390.	2,2	41
106	Age-Related Decline in Activation of JNK by TCR- and CD28-Mediated Signals in Murine T-Lymphocytes. Cellular Immunology, 1999, 197, 75-82.	1.4	40
107	T Cell Subset Patterns That Predict Resistance to Spontaneous Lymphoma, Mammary Adenocarcinoma, and Fibrosarcoma in Mice. Journal of Immunology, 2002, 169, 1619-1625.	0.4	40
108	A TORC1-histone axis regulates chromatin organisation and non-canonical induction of autophagy to ameliorate ageing. ELife, 2021, 10, .	2.8	40

#	Article	IF	CITATIONS
109	Quantitative trait loci for insulin-like growth factor I, leptin, thyroxine, and corticosterone in genetically heterogeneous mice. Physiological Genomics, 2003, 15, 44-51.	1.0	38
110	T cells in aging mice: genetic, developmental, and biochemical analyses. Immunological Reviews, 2005, 205, 94-103.	2.8	38
111	Hypothalamic growth hormone receptor (GHR)Âcontrols hepatic glucose production in nutrient-sensing leptin receptor (LepRb) expressing neurons. Molecular Metabolism, 2017, 6, 393-405.	3.0	38
112	17â€Î± estradiol ameliorates ageâ€associated sarcopenia and improves lateâ€life physical function in male mice but not in females or castrated males. Aging Cell, 2019, 18, e12920.	3.0	38
113	Age-related defects in CD4+ T cell activation reversed by glycoprotein endopeptidase. European Journal of Immunology, 2003, 33, 3464-3472.	1.6	37
114	Genetic Modulation of Hormone Levels and Life Span in Hybrids Between Laboratory and Wild-Derived Mice. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2006, 61, 1019-1029.	1.7	37
115	Long-lived crowded-litter mice have an age-dependent increase in protein synthesis to DNA synthesis ratio and mTORC1 substrate phosphorylation. American Journal of Physiology - Endocrinology and Metabolism, 2014, 307, E813-E821.	1.8	36
116	Altered development of intestinal intraepithelial lymphocytes in P-glycoprotein-deficient mice. Developmental and Comparative Immunology, 2000, 24, 783-795.	1.0	35
117	Rapamycin Attenuates Age-associated Changes in Tibialis Anterior Tendon Viscoelastic Properties. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2016, 71, 858-865.	1.7	35
118	Increased Zap-70 Association with CD3ζ in CD4 T Cells from Old Mice. Cellular Immunology, 1998, 190, 91-100.	1.4	34
119	BIOMEDICINE: Enhanced: The Anti-Aging Sweepstakes: Catalase Runs for the ROSes. Science, 2005, 308, 1875-1876.	6.0	34
120	Fibroblasts from long-lived mutant mice show diminished ERK1/2 phosphorylation but exaggerated induction of immediate early genes. Free Radical Biology and Medicine, 2009, 47, 1753-1761.	1.3	34
121	Elevated ATF4 Function in Fibroblasts and Liver of Slow-Aging Mutant Mice. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2015, 70, 263-272.	1.7	34
122	Fibroblasts From Longer-Lived Species of Primates, Rodents, Bats, Carnivores, and Birds Resist Protein Damage. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2015, 70, 791-799.	1.7	33
123	Overactive mTOR signaling leads to endometrial hyperplasia in aged women and mice. Oncotarget, 2017, 8, 7265-7275.	0.8	33
124	Comparative transcriptomics reveals circadian and pluripotency networks as two pillars of longevity regulation. Cell Metabolism, 2022, 34, 836-856.e5.	7.2	33
125	Correlated resistance to glucose deprivation and cytotoxic agents in fibroblast cell lines from long-lived pituitary dwarf mice. Mechanisms of Ageing and Development, 2006, 127, 821-829.	2.2	32
126	PohnB6F1: A Cross of Wild and Domestic Mice That Is a New Model of Extended Female Reproductive Life Span. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2007, 62, 1187-1198.	1.7	32

#	Article	IF	Citations
127	Cells From Long-Lived Mutant Mice Exhibit Enhanced Repair of Ultraviolet Lesions. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2008, 63, 219-231.	1.7	32
128	Heightened Induction of Proapoptotic Signals in Response to Endoplasmic Reticulum Stress in Primary Fibroblasts from a Mouse Model of Longevity. Journal of Biological Chemistry, 2011, 286, 30344-30351.	1.6	32
129	Long-lived crowded-litter mice exhibit lasting effects on insulin sensitivity and energy homeostasis. American Journal of Physiology - Endocrinology and Metabolism, 2014, 306, E1305-E1314.	1.8	32
130	When Will The Biology of Aging Become Useful? Future Landmarks in Biomedical Gerontology. Journal of the American Geriatrics Society, 1997, 45, 1258-1267.	1.3	30
131	Hormone levels and cataract scores as sex-specific, mid-life predictors of longevity in genetically heterogeneous mice. Mechanisms of Ageing and Development, 2003, 124, 801-810.	2.2	29
132	Hepatic response to oxidative injury in longâ€lived Ames dwarf mice. FASEB Journal, 2011, 25, 398-408.	0.2	29
133	Improved mitochondrial stress response in longâ€lived Snell dwarf mice. Aging Cell, 2019, 18, e13030.	3.0	29
134	Memory and anergy: challenges to traditional models of T lymphocyte differentiation. FASEB Journal, 1992, 6, 2428-2433.	0.2	28
135	Age-related defects in the cytoskeleton signaling pathways of CD4 T cells. Ageing Research Reviews, 2011, 10, 26-34.	5.0	28
136	Cap-independent mRNA translation is upregulated in long-lived endocrine mutant mice. Journal of Molecular Endocrinology, 2019, 63, 123-138.	1.1	28
137	Three-locus and four-locus QTL interactions influence mouse insulin-like growth factor-l. Physiological Genomics, 2006, 26, 46-54.	1.0	27
138	"Dividends" From Research on AgingCan Biogerontologists, at Long Last, Find Something Useful to Do?. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2009, 64A, 157-160.	1.7	27
139	Sulfur-based redox alterations in long-lived Snell dwarf mice. Mechanisms of Ageing and Development, 2013, 134, 321-330.	2.2	27
140	Cellular energetics and mitochondrial uncoupling in canine aging. GeroScience, 2019, 41, 229-242.	2.1	27
141	Gene-by-environment modulation of lifespan and weight gain in the murine BXD family. Nature Metabolism, 2021, 3, 1217-1227.	5.1	27
142	Aging is associated with increased brain iron through cortex-derived hepcidin expression. ELife, 2022, 11, .	2.8	27
143	Genes Against Aging. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2012, 67A, 495-502.	1.7	26
144	Comparative cellular biogerontology: Primer and prospectus. Ageing Research Reviews, 2011, 10, 181-190.	5.0	25

#	Article	IF	CITATIONS
145	Lifelong Treatment with Oral DHEA Sulfate Does Not Preserve Immune Function, Prevent Disease, or Improve Survival in Genetically Heterogeneous Mice. Journal of the American Geriatrics Society, 1999, 47, 960-966.	1.3	24
146	Mechanisms of stress resistance in Snell dwarf mouse fibroblasts: Enhanced antioxidant and DNA base excision repair capacity, but no differences in mitochondrial metabolism. Free Radical Biology and Medicine, 2009, 46, 1109-1118.	1.3	24
147	Mitochondrial thioredoxin reductase 2 is elevated in longâ€lived primate as well as rodent species and extends fly mean lifespan. Aging Cell, 2017, 16, 683-692.	3.0	24
148	Calcium signal abnormalities in murine T lymphocytes that express the multidrug transporter P-glycoprotein. Mechanisms of Ageing and Development, 1999, 107, 165-180.	2.2	22
149	Age-Related Defects in Moesin/Ezrin Cytoskeletal Signals in Mouse CD4 T Cells. Journal of Immunology, 2007, 179, 6403-6409.	0.4	22
150	Differential effects of early-life nutrient restriction in long-lived GHR-KO and normal mice. GeroScience, 2017, 39, 347-356.	2.1	22
151	Long term rapamycin treatment improves mitochondrial DNA quality in aging mice. Experimental Gerontology, 2018, 106, 125-131.	1.2	22
152	Capâ€independent translation: A shared mechanism for lifespan extension by rapamycin, acarbose, and 17i±â€estradiol. Aging Cell, 2021, 20, e13345.	3.0	22
153	Cluster Formation by Protein Kinase CÎ, during Murine T Cell Activation: Effect of Age. Cellular Immunology, 1999, 195, 28-36.	1.4	21
154	Coordinated Genetic Control of Neoplastic and Nonneoplastic Diseases in Mice. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2002, 57, B3-B8.	1.7	21
155	Enhancement of CD8 T-cell function through modifying surface glycoproteins in young and old mice. Immunology, 2006, 119, 187-194.	2.0	21
156	Augmented autophagy pathways and MTOR modulation in fibroblasts from long-lived mutant mice. Autophagy, 2012, 8, 1273-1274.	4.3	21
157	Long-lived mice with reduced growth hormone signaling have a constitutive upregulation of hepatic chaperone-mediated autophagy. Autophagy, 2021, 17, 612-625.	4.3	21
158	Evaluating Evidence for Aging. Science, 2005, 310, 441-443.	6.0	20
159	How Long Will My Mouse Live? Machine Learning Approaches for Prediction of Mouse Life Span. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2008, 63, 895-906.	1.7	20
160	Loss of the Ubiquitin-conjugating Enzyme UBE2W Results in Susceptibility to Early Postnatal Lethality and Defects in Skin, Immune, and Male Reproductive Systems. Journal of Biological Chemistry, 2016, 291, 3030-3042.	1.6	20
161	Direct and indirect effects of growth hormone receptor ablation on liver expression of xenobiotic metabolizing genes. American Journal of Physiology - Endocrinology and Metabolism, 2013, 305, E942-E950.	1.8	19
162	Early life growth hormone treatment shortens longevity and decreases cellular stress resistance in longâ€ived mutant mice. FASEB Journal, 2010, 24, 5073-5079.	0.2	19

#	Article	IF	CITATIONS
163	Quantitative Trait Locus Mapping for Age-Related Cataract Severity and Synechia Prevalence Using Four-Way Cross Mice., 2004, 45, 1922.		18
164	Transient early food restriction leads to hypothalamic changes in the long-lived crowded litter female mice. Physiological Reports, 2015, 3, e12379.	0.7	18
165	Life-span Extension Drug Interventions Affect Adipose Tissue Inflammation in Aging. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2020, 75, 89-98.	1.7	18
166	Inhibition of class I PI3K enhances chaperone-mediated autophagy. Journal of Cell Biology, 2020, 219, .	2.3	18
167	Biomarkers of Aging. Science of Aging Knowledge Environment: SAGE KE, 2001, 2001, 2pe-2.	0.9	18
168	Increased Mammalian Target of Rapamycin Complex 2 Signaling Promotes Age-Related Decline in CD4 T Cell Signaling and Function. Journal of Immunology, 2013, 191, 4648-4655.	0.4	17
169	Brain Protein Synthesis Rates in the UM-HET3 Mouse Following Treatment With Rapamycin or Rapamycin With Metformin. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2020, 75, 40-49.	1.7	17
170	<i>signatureSearch</i> : environment for gene expression signature searching and functional interpretation. Nucleic Acids Research, 2020, 48, e124-e124.	6.5	17
171	Neuroprotective effects of Canagliflozin: Lessons from aged genetically diverse UMâ€HET3 mice. Aging Cell, 2022, 21, .	3.0	17
172	Age-Sensitive and -Insensitive Pathways Leading to JNK Activation in Mouse CD4+ T-Cells. Cellular Immunology, 1999, 197, 83-90.	1.4	16
173	The First International Mini-Symposium on Methionine Restriction and Lifespan. Frontiers in Genetics, 2014, 5, 122.	1.1	16
174	17-α-Estradiol Has Sex-Specific Effects on Neuroinflammation That Are Partly Reversed by Gonadectomy. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2022, 77, 66-74.	1.7	16
175	Acarbose has sex-dependent and -independent effects on age-related physical function, cardiac health, and lipid biology. JCI Insight, 2020, 5, .	2.3	16
176	Alleles that modulate late life hearing in genetically heterogeneous mice. Neurobiology of Aging, 2012, 33, 1842.e15-1842.e29.	1.5	15
177	Age related increase in mTOR activity contributes to the pathological changes in ovarian surface epithelium. Oncotarget, 2016, 7, 19214-19227.	0.8	15
178	Biology of cancer and aging. Cancer, 1991, 68, 2525-2526.	2.0	14
179	Hyperglycemia, impaired glucose tolerance and elevated glycated hemoglobin levels in a long-lived mouse stock. Experimental Gerontology, 2005, 40, 303-314.	1.2	14
180	Quantitative trait loci modulate vertebral morphology and mechanical properties in a population of 18-month-old genetically heterogeneous mice. Bone, 2007, 40, 433-443.	1.4	14

#	Article	IF	Citations
181	Fibroblasts from longâ€lived species of mammals and birds show delayed, but prolonged, phosphorylation of <scp>ERK</scp> . Aging Cell, 2014, 13, 283-291.	3.0	14
182	Genetic Approaches to the Study of Aging. Journal of the American Geriatrics Society, 2005, 53, S284-S286.	1.3	13
183	Dissection of complex adult traits in a mouse synthetic population. Genome Research, 2012, 22, 1549-1557.	2.4	13
184	Syntaxin 4 Overexpression Ameliorates Effects of Aging and High-Fat Diet on Glucose Control and Extends Lifespan. Cell Metabolism, 2015, 22, 499-507.	7.2	13
185	Muscle-dependent regulation of adipose tissue function in long-lived growth hormone-mutant mice. Aging, 2020, 12, 8766-8789.	1.4	13
186	Rapamycin, Acarbose and $17\hat{l}_{\pm}$ -estradiol share common mechanisms regulating the MAPK pathways involved in intracellular signaling and inflammation. Immunity and Ageing, 2022, 19, 8.	1.8	13
187	Preservation of femoral bone thickness in middle age predicts survival in genetically heterogeneous mice. Aging Cell, 2011, 10, 383-391.	3.0	12
188	Differential Effects of Delayed Aging on Phenotype and Striatal Pathology in a Murine Model of Huntington Disease. Journal of Neuroscience, 2014, 34, 15658-15668.	1.7	12
189	Fibroblasts From Long-Lived Rodent Species Exclude Cadmium. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2015, 70, 10-19.	1.7	12
190	High-throughput small molecule screening reveals Nrf2-dependent and -independent pathways of cellular stress resistance. Science Advances, 2020, 6, .	4.7	12
191	Transient early life growth hormone exposure permanently alters brain, muscle, liver, macrophage, and adipocyte statusÂin longâ€lived Ames dwarf mice. FASEB Journal, 2022, 36, .	0.2	12
192	CD43-independent augmentation of mouse T-cell function by glycoprotein cleaving enzymes. Immunology, 2006, 119, 178-186.	2.0	11
193	Inhibition of retinoic acid-induced skin irritation in calorie-restricted mice. Archives of Dermatological Research, 2008, 300, 27-35.	1.1	11
194	Naturally occurring osteoarthritis in male mice with an extended lifespan. Connective Tissue Research, 2020, 61, 95-103.	1.1	11
195	NIA Interventions Testing Program: A collaborative approach for investigating interventions to promote healthy aging., 2021,, 219-235.		11
196	Defective Calcium Signal Generation in a T Cell Subset That Accumulates in Old Mice. Annals of the New York Academy of Sciences, 1989, 568, 271-276.	1.8	10
197	A glycoprotein endopeptidase enhances calcium influx and cytokine production by CD4+ T cells of old and young mice. International Immunology, 2005, 17, 983-991.	1.8	10
198	Detection of plasma membrane Ca2+-ATPase activity in mouse T lymphocytes by flow cytometry using fluo-3-loaded vesicles., 1996, 24, 243-250.		9

#	Article	IF	CITATIONS
199	Rebuttal to Hasty and Vijg: 'Accelerating aging by mouse reverse genetics: a rational approach to understanding longevity'. Aging Cell, 2004, 3, 53-54.	3.0	9
200	Growth and Aging. , 2005, , 512-533.		9
201	Age-related changes in lck–Vav signaling pathways in mouse CD4 T cells. Cellular Immunology, 2009, 259, 100-104.	1.4	9
202	Ex Vivo Enzymatic Treatment of Aged CD4 T Cells Restores Cognate T Cell Helper Function and Enhances Antibody Production in Mice. Journal of Immunology, 2012, 189, 5582-5589.	0.4	9
203	CD4 receptor diversity represents an ancient protection mechanism against primate lentiviruses. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	9
204	A Position Paper on Longevity Genes. Science of Aging Knowledge Environment: SAGE KE, 2001, 2001, 6vp-6.	0.9	9
205	New paradigms for research on aging and late-life illness. Mechanisms of Ageing and Development, 2001, 122, 130-132.	2.2	8
206	Aging, Disease, and Longevity in Mice. Annual Review of Gerontology and Geriatrics, 2014, 34, 93-138.	0.5	8
207	Lysosomal targetomics of <i>ghr KO</i> mice shows chaperone-mediated autophagy degrades nucleocytosolic acetyl-coA enzymes. Autophagy, 2022, 18, 1551-1571.	4.3	8
208	Not Your Father's, or Mother's, Rodent: Moving Beyond B6. Neuron, 2016, 91, 1185-1186.	3.8	7
209	Principles of Animal Use for Gerontological Research. , 2006, , 21-31.		7
210	Mini-review: Retarding aging in murine genetic models of neurodegeneration. Neurobiology of Disease, 2016, 85, 73-80.	2.1	6
211	Early Life Interventions Can Shape Aging. Frontiers in Endocrinology, 2022, 13, 797581.	1.5	5
212	Clonal endurance and clonal burst size: novel indices of helper T cell heterogeneity. European Journal of Immunology, 1984, 14, 992-997.	1.6	4
213	Ex vivo enzymatic treatment of aged CD4 T cells restores antigen-driven CD69 expression and proliferation in mice. Immunobiology, 2011, 216, 66-71.	0.8	3
214	Resistance of skin fibroblasts to peroxide and UV damage predicts hearing loss in aging mice. Aging Cell, 2011, 10, 362-363.	3.0	3
215	Potential Site Effects and Transgene Expression Discrepancies in Mouse Lifespan Studies. Cell Metabolism, 2015, 22, 346-347.	7.2	3
216	NIA Interventions Testing Program. , 2016, , 287-303.		3

#	Article	IF	CITATIONS
217	Genetically heterogeneous mice show age-related vision deficits not related to increased rod cell L-type calcium channel function inÂvivo. Neurobiology of Aging, 2017, 49, 198-203.	1.5	3
218	Canagliflozin Increases Intestinal Adenoma Burden in Female ApcMin/+ Mice. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2022, 77, 215-220.	1.7	3
219	Dietary Glycine Supplementation Extends Lifespan of Genetically Heterogeneous Mice. FASEB Journal, 2018, 32, 533.112.	0.2	3
220	Quantitation of Functional T Cells by Limiting Dilution. , 2001, Chapter 3, Unit 3.15.		2
221	Roy Walford: a tribute. Experimental Gerontology, 2004, 39, 917-918.	1.2	2
222	Mitochondrial DNA alterations in aged macrophage migration inhibitory factor-knockout mice. Mechanisms of Ageing and Development, 2019, 182, 111126.	2.2	2
223	Mouse (Mus musculus) stocks derived from tropical islands: new models for genetic analysis of life-history traits., 2000, 250, 95.		2
224	Regulation of mTOR complexes in long-lived growth hormone receptor knockout and Snell dwarf mice. Aging, 2022, 14, 2442-2461.	1.4	2
225	Immunoproteasome System in Aging, Lifespan, and Age-Associated Disease. , 2018, , 1-17.		1
226	Assessment of protein synthesis and cellular proliferation in longâ€lived crowded litter mice. FASEB Journal, 2013, 27, 1202.25.	0.2	1
227	Nrf2â€regulated antioxidant defenses in rodent models of longevity. FASEB Journal, 2013, 27, 712.25.	0.2	1
228	Chronic rapamycin administration maintains mitochondrial protein synthesis in heart and skeletal muscle. FASEB Journal, 2012, 26, 1075.4.	0.2	0
229	Longevity Promoting Interventions Inhibit Molecular and Functional Changes In Aging Hematopoietic Stem Cells. Blood, 2013, 122, 1168-1168.	0.6	0
230	Intrinsic Mitochondrial Dynamics and Cytoskeletal Properties Underlie Aging Diversity in Dogs. SSRN Electronic Journal, 0, , .	0.4	0
231	Immunoproteasome System in Aging, Lifespan, and Age-Associated Disease. , 2019, , 1281-1297.		О