
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/204341/publications.pdf Version: 2024-02-01

IAKUR POHLENA

#	Article	IF	CITATIONS
1	Mitochondrial Genome Acquisition Restores Respiratory Function and Tumorigenic Potential of Cancer Cells without Mitochondrial DNA. Cell Metabolism, 2015, 21, 81-94.	16.2	582
2	Endothelial KLF2 Links Local Arterial Shear Stress Levels to the Expression of Vascular Tone-Regulating Genes. American Journal of Pathology, 2005, 167, 609-618.	3.8	318
3	Horizontal transfer of whole mitochondria restores tumorigenic potential in mitochondrial DNA-deficient cancer cells. ELife, 2017, 6, .	6.0	205
4	Classification of mitocans, anti-cancer drugs acting on mitochondria. Mitochondrion, 2013, 13, 199-208.	3.4	199
5	Mitochondrial Complex II: At the Crossroads. Trends in Biochemical Sciences, 2017, 42, 312-325.	7.5	192
6	Reactivation of Dihydroorotate Dehydrogenase-Driven Pyrimidine Biosynthesis Restores Tumor Growth of Respiration-Deficient Cancer Cells. Cell Metabolism, 2019, 29, 399-416.e10.	16.2	190
7	Mitochondrial Targeting of Vitamin E Succinate Enhances Its Pro-apoptotic and Anti-cancer Activity via Mitochondrial Complex II. Journal of Biological Chemistry, 2011, 286, 3717-3728.	3.4	171
8	Prolonged shear stress and KLF2 suppress constitutive proinflammatory transcription through inhibition of ATF2. Blood, 2007, 109, 4249-4257.	1.4	131
9	Suppression of Tumor Growth <i>In vivo</i> by the Mitocan α-tocopheryl Succinate Requires Respiratory Complex II. Clinical Cancer Research, 2009, 15, 1593-1600.	7.0	125
10	Shear stress sustains atheroprotective endothelial KLF2 expression more potently than statins through mRNA stabilization. Cardiovascular Research, 2006, 72, 231-240.	3.8	112
11	Platelets Facilitate the Wound-Healing Capability of Mesenchymal Stem Cells by Mitochondrial Transfer and Metabolic Reprogramming. Cell Metabolism, 2021, 33, 283-299.e9.	16.2	102
12	Mitochondrial targeting of α-tocopheryl succinate enhances its pro-apoptotic efficacy: A new paradigm for effective cancer therapy. Free Radical Biology and Medicine, 2011, 50, 1546-1555.	2.9	100
13	Selective Disruption of Respiratory Supercomplexes as a New Strategy to Suppress Her2 ^{high} Breast Cancer. Antioxidants and Redox Signaling, 2017, 26, 84-103.	5.4	93
14	Hippo/Mst1 Stimulates Transcription of the Proapoptotic Mediator <i>NOXA</i> in a FoxO1-Dependent Manner. Cancer Research, 2011, 71, 946-954.	0.9	91
15	Mitochondrial complex II, a novel target for anti-cancer agents. Biochimica Et Biophysica Acta - Bioenergetics, 2013, 1827, 552-564.	1.0	87
16	Mitochondrial complex II and reactive oxygen species in disease and therapy. Redox Report, 2020, 25, 26-32.	4.5	85
17	Anticancer Drugs Targeting the Mitochondrial Electron Transport Chain. Antioxidants and Redox Signaling, 2011, 15, 2951-2974.	5.4	79
18	Dihydroorotate dehydrogenase in oxidative phosphorylation and cancer. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165759.	3.8	73

#	Article	IF	CITATIONS
19	Selective elimination of senescent cells by mitochondrial targeting is regulated by ANT2. Cell Death and Differentiation, 2019, 26, 276-290.	11.2	69
20	Mitochondria-adaptor TRAK1 promotes kinesin-1 driven transport in crowded environments. Nature Communications, 2020, 11, 3123.	12.8	60
21	Endothelial CD81 is a marker of early human atherosclerotic plaques and facilitates monocyte adhesion. Cardiovascular Research, 2009, 81, 187-196.	3.8	48
22	Mitochondrially Targeted α-Tocopheryl Succinate Is Antiangiogenic: Potential Benefit Against Tumor Angiogenesis but Caution Against Wound Healing. Antioxidants and Redox Signaling, 2011, 15, 2923-2935.	5.4	48
23	Ubiquinone-binding site mutagenesis reveals the role of mitochondrial complex II in cell death initiation. Cell Death and Disease, 2015, 6, e1749-e1749.	6.3	47
24	Nuclear Receptor Nurr1 Is Expressed In and Is Associated With Human Restenosis and Inhibits Vascular Lesion Formation In Mice Involving Inhibition of Smooth Muscle Cell Proliferation and Inflammation. Circulation, 2010, 121, 2023-2032.	1.6	46
25	Alternative assembly of respiratory complex II connects energy stress to metabolic checkpoints. Nature Communications, 2018, 9, 2221.	12.8	44
26	MicroRNA-126 induces autophagy by altering cell metabolism in malignant mesothelioma. Oncotarget, 2016, 7, 36338-36352.	1.8	41
27	Mitochondrially Targeted Vitamin E Succinate Modulates Expression of Mitochondrial DNA Transcripts and Mitochondrial Biogenesis. Antioxidants and Redox Signaling, 2015, 22, 883-900.	5.4	39
28	Functional duplication of ligand-binding domains within low-density lipoprotein receptor-related protein for interaction with receptor associated protein, α2-macroglobulin, factor IXa and factor VIII. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2007, 1774, 714-722.	2.3	38
29	Powerhouse down: Complex II dissociation in the respiratory chain. Mitochondrion, 2014, 19, 20-28.	3.4	37
30	Targeting the Mitochondrial Electron Transport Chain Complexes for the Induction of Apoptosis and Cancer Treatment. Current Pharmaceutical Biotechnology, 2013, 14, 377-389.	1.6	30
31	Replication and ribosomal stress induced by targeting pyrimidine synthesis and cellular checkpoints suppress p53-deficient tumors. Cell Death and Disease, 2020, 11, 110.	6.3	27
32	The role of Her2 and other oncogenes of the PI3K/AKT pathway in mitochondria. Biological Chemistry, 2016, 397, 607-615.	2.5	26
33	Limited contribution of claudin-5-dependent tight junction strands to endothelial barrier function. European Journal of Cell Biology, 2006, 85, 1131-1144.	3.6	25
34	Residues Phe342–Asn346 of Activated Coagulation Factor IX Contribute to the Interaction with Low Density Lipoprotein Receptor-related Protein. Journal of Biological Chemistry, 2003, 278, 9394-9401.	3.4	23
35	Germline <i>SUCLG2</i> Variants in Patients With Pheochromocytoma and Paraganglioma. Journal of the National Cancer Institute, 2022, 114, 130-138.	6.3	21
36	Antioxidant defense in quiescent cells determines selectivity of electron transport chain inhibition-induced cell death. Free Radical Biology and Medicine, 2017, 112, 253-266.	2.9	20

#	Article	IF	CITATIONS
37	SMAD4 loss limits the vulnerability of pancreatic cancer cells to complex I inhibition via promotion of mitophagy. Oncogene, 2021, 40, 2539-2552.	5.9	18
38	K-Ras and mitochondria: Dangerous liaisons. Cell Research, 2012, 22, 285-287.	12.0	17
39	The Assembly Factor SDHAF2 Is Dispensable for Flavination of the Catalytic Subunit of Mitochondrial Complex II in Breast Cancer Cells. Journal of Biological Chemistry, 2016, 291, 21414-21420.	3.4	17
40	Mitochondria-driven elimination of cancer and senescent cells. Biological Chemistry, 2019, 400, 141-148.	2.5	13
41	Mitochondrial respiration supports autophagy to provide stress resistance during quiescence. Autophagy, 2022, 18, 2409-2426.	9.1	13
42	High Molecular Weight Forms of Mammalian Respiratory Chain Complex II. PLoS ONE, 2013, 8, e71869.	2.5	12
43	Miro proteins connect mitochondrial function and intercellular transport. Critical Reviews in Biochemistry and Molecular Biology, 2021, 56, 1-25.	5.2	11
44	Mitocans: Mitochondrially Targeted Anti-cancer Drugs. , 2018, , 613-635.		6
45	In Vitro Reconstitution of Molecular Motor-Driven Mitochondrial Transport. Methods in Molecular Biology, 2022, 2431, 533-546.	0.9	3
46	Evaluation of Respiration of Mitochondria in Cancer Cells Exposed to Mitochondria-Targeted Agents. Methods in Molecular Biology, 2015, 1265, 181-194.	0.9	2
47	Shikonin impairs mitochondrial activity to selectively target leukemia cells. Phytomedicine Plus, 2022, 2, 100300.	2.0	2
48	Mitocans, Mitochondria-Targeting Anticancer Drugs. Oxidative Stress and Disease, 2012, , 55-91.	0.3	1
49	915 Mitochondrial Targeting of Vitamin E Succinate Enhances Its Anti-cancer Activity Via Mitochondrial Complex II and Presents Potential Benefit Against Tumour Angiogenesis. European Journal of Cancer, 2012, 48, S221-S222.	2.8	1
50	Selective elimination of senescent cells by mitochondrial targeting is regulated via ANT2. Free Radical Biology and Medicine, 2018, 120, S116.	2.9	1
51	Limited contribution of claudin-5 dependent tight junction strands to endothelial barrier function. Vascular Pharmacology, 2006, 45, e81.	2.1	0
52	424 Role of the Ubiquinone Site of Complex II in Apoptosis Induction and Malignant Transformation. European Journal of Cancer, 2012, 48, S103.	2.8	0
53	542 The Experimental Anti-cancer Drug Mitochondrially-targeted Vitamin E Succinate Inhibits Mitochondrial Transcription. European Journal of Cancer, 2012, 48, 167.	2.8	0

#	Article	IF	CITATIONS
55	Oxidative phosphorylation provides stress resistance in non-proliferating cells. Free Radical Biology and Medicine, 2021, 165, 46.	2.9	Ο
56	Novel Germline <i>SUCLG2</i> Mutations in Patients With Pheochromocytoma and Paraganglioma. Journal of the Endocrine Society, 2021, 5, A168-A169.	0.2	0
57	Platelets Promote Pro-Angiogenic Activity of Mesenchymal Stem Cells Via Mitochondrial Transfer and Metabolic Reprogramming. SSRN Electronic Journal, 0, , .	0.4	Ο