
Geert F Wiegertjes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2043227/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hydrodynamic Flow-Mediated Protein Sorting on the Cell Surface of Trypanosomes. Cell, 2007, 131, 505-515.	28.9	352
2	Immunogenetics of disease resistance in fish: A comparative approach. Developmental and Comparative Immunology, 1996, 20, 365-381.	2.3	306
3	Ligand specificities of Toll-like receptors in fish: Indications from infection studies. Developmental and Comparative Immunology, 2014, 43, 205-222.	2.3	197
4	Exploring fish microbial communities to mitigate emerging diseases in aquaculture. FEMS Microbiology Ecology, 2018, 94, .	2.7	152
5	Molecular and functional characterization of carp TNF: a link between TNF polymorphism and trypanotolerance?. Developmental and Comparative Immunology, 2003, 27, 29-41.	2.3	151
6	Long-lived effects of administering β-glucans: Indications for trained immunity in fish. Developmental and Comparative Immunology, 2016, 64, 93-102.	2.3	150
7	Head Kidney-Derived Macrophages of Common Carp (<i>Cyprinus carpio</i> L.) Show Plasticity and Functional Polarization upon Differential Stimulation. Journal of Immunology, 2006, 177, 61-69.	0.8	142
8	Feed, Microbiota, and Gut Immunity: Using the Zebrafish Model to Understand Fish Health. Frontiers in Immunology, 2020, 11, 114.	4.8	142
9	Polarization of immune responses in fish: The â€~macrophages first' point of view. Molecular Immunology, 2016, 69, 146-156.	2.2	128
10	Differential expression of two interferon-Î ³ genes in common carp (Cyprinus carpio L.). Developmental and Comparative Immunology, 2008, 32, 1467-1481.	2.3	117
11	The immune response of carp to Trypanoplasma borreli: kinetics of immune gene expression and polyclonal lymphocyte activation. Developmental and Comparative Immunology, 2003, 27, 859-874.	2.3	116
12	Molecular cloning and expression of two β-defensin and two mucin genes in common carp (Cyprinus) Tj ETQq0 C 494-501.) 0 rgBT /C 3.6	Verlock 10 T 112
13	Carp II10 Has Anti-Inflammatory Activities on Phagocytes, Promotes Proliferation of Memory T Cells, and Regulates B Cell Differentiation and Antibody Secretion. Journal of Immunology, 2015, 194, 187-199.	0.8	102
14	Comparison of the Exomes of Common Carp (<i>Cyprinus carpio</i>) and Zebrafish (<i>Danio) Tj ETQq0 0 0 rgB</i>	T /Overloc I.I	k 10 Tf 50 22
15	Evolution of Recognition of Ligands from Gram-Positive Bacteria: Similarities and Differences in the TLR2-Mediated Response between Mammalian Vertebrates and Teleost Fish. Journal of Immunology, 2010, 184, 2355-2368.	0.8	85
16	Heterogeneity of macrophage activation in fish. Developmental and Comparative Immunology, 2011, 35, 1246-1255.	2.3	83
17	Activation of the Chicken Type I Interferon Response by Infectious Bronchitis Coronavirus. Journal of Virology, 2015, 89, 1156-1167.	3.4	81
18	Transcription of signal-3 cytokines, IL-12 and IFNÎ \pm Î ² , coincides with the timing of CD8Î \pm Î ² up-regulation during viral infection of common carp (Cyprinus carpie L.). Molecular Immunology 2008, 45, 1531, 1547	2.2	80

during viral infection of common carp (Cyprinus carpio L.). Molecular Immunology, 2008, 45, 1531-1547. 2.2 18

GEERT F WIEGERTJES

#	Article	IF	CITATIONS
19	Infectious Bronchitis Coronavirus Limits Interferon Production by Inducing a Host Shutoff That Requires Accessory Protein 5b. Journal of Virology, 2016, 90, 7519-7528.	3.4	76
20	Comparative studies of Toll-like receptor signalling using zebrafish. Developmental and Comparative Immunology, 2014, 46, 35-52.	2.3	75
21	Evolutionary conservation of alternative activation of macrophages: Structural and functional characterization of arginase 1 and 2 in carp (Cyprinus carpio L.). Molecular Immunology, 2006, 43, 1116-1128.	2.2	67
22	Real-time gene expression analysis in carp (Cyprinus carpio L.) skin: Inflammatory responses to injury mimicking infection with ectoparasites. Developmental and Comparative Immunology, 2007, 31, 244-254.	2.3	62
23	β-Clucan-supplemented diets increase poly(I:C)-induced gene expression of Mx, possibly via Tlr3-mediated recognition mechanism in common carp (Cyprinus carpio). Fish and Shellfish Immunology, 2014, 36, 494-502.	3.6	58
24	Conserved Fever Pathways across Vertebrates: A Herpesvirus Expressed Decoy TNF-α Receptor Delays Behavioral Fever in Fish. Cell Host and Microbe, 2017, 21, 244-253.	11.0	57
25	Studies Into β-Glucan Recognition in Fish Suggests a Key Role for the C-Type Lectin Pathway. Frontiers in Immunology, 2019, 10, 280.	4.8	56
26	Receptor-Mediated and Lectin-Like Activities of Carp (<i>Cyprinus carpio</i>) TNF-α. Journal of Immunology, 2009, 183, 5319-5332.	0.8	55
27	Evidence of Trained Immunity in a Fish: Conserved Features in Carp Macrophages. Journal of Immunology, 2019, 203, 216-224.	0.8	54
28	Differential contribution of neutrophilic granulocytes and macrophages to nitrosative stress in a host–parasite animal model. Molecular Immunology, 2008, 45, 3178-3189.	2.2	53
29	Transcriptional analysis of the common carp (Cyprinus carpio L.) immune response to the fish louse Argulus japonicus Thiele (Crustacea: Branchiura). Fish and Shellfish Immunology, 2008, 25, 76-83.	3.6	51
30	Properties of Carotenoids in Fish Fitness: A Review. Marine Drugs, 2020, 18, 568.	4.6	50
31	Major histocompatibility genes in cyprinid fishes: theory and practice. Immunological Reviews, 1998, 166, 301-316.	6.0	48
32	Trypanosomiasis-Induced Th17-Like Immune Responses in Carp. PLoS ONE, 2010, 5, e13012.	2.5	48
33	Molecular and functional characterization of Toll-like receptor (Tlr)1 and Tlr2 in common carp () Tj ETQq1 1	0.784314 rgBT	/Qverlock 10
34	The Use of Real-Time Quantitative PCR for the Analysis of Cytokine mRNA Levels. Methods in Molecular Biology, 2012, 820, 7-23.	0.9	46
35	Genetic differences in natural antibody levels in common carp (Cyprinus carpio L.). Fish and Shellfish Immunology, 2006, 21, 404-413.	3.6	44
36	Differential macrophage polarisation during parasitic infections in common carp (Cyprinus carpio L.). Fish and Shellfish Immunology, 2006, 21, 561-571.	3.6	44

GEERT F WIEGERTJES

#	Article	IF	CITATIONS
37	Fish Macrophages Show Distinct Metabolic Signatures Upon Polarization. Frontiers in Immunology, 2020, 11, 152.	4.8	44
38	Carbohydrate utilisation by tilapia: a metaâ€analytical approach. Reviews in Aquaculture, 2020, 12, 1851-1866.	9.0	43
39	Molecular and functional characterization of the scavenger receptor CD36 in zebrafish and common carp. Molecular Immunology, 2015, 63, 381-393.	2.2	41
40	Differential transcription of multiple forms of alpha-2-macroglobulin in carp (Cyprinus carpio) infected with parasites. Developmental and Comparative Immunology, 2008, 32, 339-347.	2.3	39
41	Accessory molecules for Toll-like receptors in Teleost fish. Identification of TLR4 interactor with leucine-rich repeats (TRIL). Molecular Immunology, 2013, 56, 745-756.	2.2	38
42	Identification and functional characterization of nonmammalian Toll-like receptor 20. Immunogenetics, 2014, 66, 123-141.	2.4	38
43	Infectious Bronchitis Coronavirus Inhibits STAT1 Signaling and Requires Accessory Proteins for Resistance to Type I Interferon Activity. Journal of Virology, 2015, 89, 12047-12057.	3.4	38
44	Intramuscular DNA Vaccination of Juvenile Carp against Spring Viremia of Carp Virus Induces Full Protection and Establishes a Virus-Specific B and T Cell Response. Frontiers in Immunology, 2017, 8, 1340.	4.8	38
45	Major histocompatibility (MH) class II B gene polymorphism influences disease resistance of common carp (Cyprinus carpio L.). Aquaculture, 2009, 288, 44-50.	3.5	35
46	Lymphoid Tissue in Teleost Gills: Variations on a Theme. Biology, 2020, 9, 127.	2.8	35
47	Genomic and transcriptomic approaches to study immunology in cyprinids: What is next?. Developmental and Comparative Immunology, 2017, 75, 48-62.	2.3	31
48	The kinetics of cellular and humoral immune responses of common carp to presporogonic development of the myxozoan Sphaerospora molnari. Parasites and Vectors, 2019, 12, 208.	2.5	31
49	The induction of nitric oxide response of carp macrophages by transferrin is influenced by the allelic diversity of the molecule. Fish and Shellfish Immunology, 2009, 26, 632-638.	3.6	29
50	Different capacities of carp leukocytes to encounter nitric oxide-mediated stress: a role for the intracellular reduced glutathione pool. Developmental and Comparative Immunology, 2003, 27, 555-568.	2.3	28
51	Parasite infections revisited. Developmental and Comparative Immunology, 2005, 29, 749-758.	2.3	28
52	Transcriptome sequencing supports a conservation of macrophage polarization in fish. Scientific Reports, 2020, 10, 13470.	3.3	28
53	Visualizing trypanosomes in a vertebrate host reveals novel swimming behaviours, adaptations and attachment mechanisms. ELife, 2019, 8, .	6.0	25
54	Cyprinid Herpesvirus 3 ll10 Inhibits Inflammatory Activities of Carp Macrophages and Promotes Proliferation of Igm+ B Cells and Memory T Cells in a Manner Similar to Carp II10. Journal of Immunology, 2015, 195, 3694-3704.	0.8	24

#	Article	IF	CITATIONS
55	Pichia pastoris yeast as a vehicle for oral vaccination of larval and adult teleosts. Fish and Shellfish Immunology, 2019, 85, 52-60.	3.6	24
56	Intra-muscular and oral vaccination using a Koi Herpesvirus ORF25 DNA vaccine does not confer protection in common carp (Cyprinus carpio L.). Fish and Shellfish Immunology, 2019, 85, 90-98.	3.6	24
57	Molecular cloning and functional charactrisation of a cathepsin L-like proteinase from the fish kinetoplastid parasite Trypanosoma carassii. Fish and Shellfish Immunology, 2008, 24, 205-214.	3.6	23
58	Immune-relevant thrombocytes of common carp undergo parasite-induced nitric oxide-mediated apoptosis. Developmental and Comparative Immunology, 2015, 50, 146-154.	2.3	23
59	Genetic resistance of carp (Cyprinus carpio L.) to Trypanoplasma borreli: Influence of transferrin polymorphisms. Veterinary Immunology and Immunopathology, 2009, 127, 19-25.	1.2	22
60	Carp Il10a and Il10b exert identical biological activities inÂvitro, but are differentially regulated inÂvivo. Developmental and Comparative Immunology, 2017, 67, 350-360.	2.3	21
61	Different transcriptional response between susceptible and resistant common carp (Cyprinus carpio) fish hints on the mechanism of CyHV-3 disease resistance. BMC Genomics, 2019, 20, 1019.	2.8	21
62	Nitric oxide hinders antibody clearance from the surface of Trypanoplasma borreli and increases susceptibility to complement-mediated lysis. Molecular Immunology, 2009, 46, 3188-3197.	2.2	20
63	Trypanoplasma borreli cysteine proteinase activities support a conservation of function with respect to digestion of host proteins in common carp. Developmental and Comparative Immunology, 2008, 32, 1348-1361.	2.3	19
64	A Novel Soluble Immune-Type Receptor (SITR) in Teleost Fish: Carp SITR Is Involved in the Nitric Oxide-Mediated Response to a Protozoan Parasite. PLoS ONE, 2011, 6, e15986.	2.5	18
65	High-Resolution, 3D Imaging of the Zebrafish Gill-Associated Lymphoid Tissue (GIALT) Reveals a Novel Lymphoid Structure, the Amphibranchial Lymphoid Tissue. Frontiers in Immunology, 2021, 12, 769901.	4.8	18
66	Allelic discrimination, three-dimensional analysis and gene expression of multiple transferrin alleles of common carp (Cyprinus carpio L.). Fish and Shellfish Immunology, 2009, 26, 573-581.	3.6	17
67	Mixed infection with Trypanoplasma borreli and Trypanosoma carassii induces protection: Involvement of cross-reactive antibodies. Developmental and Comparative Immunology, 2007, 31, 903-915.	2.3	15
68	Paralogs of Common Carp Granulocyte Colony-Stimulating Factor (G-CSF) Have Different Functions Regarding Development, Trafficking and Activation of Neutrophils. Frontiers in Immunology, 2019, 10, 255.	4.8	15
69	β-Glucan-Induced Immuno-Modulation: A Role for the Intestinal Microbiota and Short-Chain Fatty Acids in Common Carp. Frontiers in Immunology, 2021, 12, 761820.	4.8	15
70	The Occurrence of Mycotoxins in Raw Materials and Fish Feeds in Europe and the Potential Effects of Deoxynivalenol (DON) on the Health and Growth of Farmed Fish Species—A Review. Toxins, 2021, 13, 403.	3.4	14
71	Nitrosative Stress During Infection-Induced Inflammation in Fish: Lessons From a Host-Parasite Infection Model. Current Pharmaceutical Design, 2010, 16, 4194-4202.	1.9	13
72	cDNA expression library screening and identification of two novel antigens: Ubiquitin and receptor for activated C kinase (RACK) homologue, of the fish parasite Trypanosoma carassii. Fish and Shellfish Immunology, 2008, 25, 84-90.	3.6	12

GEERT F WIEGERTJES

#	Article	IF	CITATIONS
73	An early βâ€glucan bath during embryo development increases larval size of Nile tilapia. Aquaculture Research, 2019, 50, 2012-2014.	1.8	10
74	Minor effect of depletion of resident macrophages from peritoneal cavity on resistance of common carp Cyprinus carpio to blood flagellates. Diseases of Aquatic Organisms, 2003, 57, 67-75.	1.0	8
75	Classical crosses of common carp (Cyprinus carpio L.) show co-segregation of antibody response with major histocompatibility class II B genes. Fish and Shellfish Immunology, 2009, 26, 352-358.	3.6	8
76	Re-evaluation of common carp (Cyprinus carpio L.) housekeeping genes for gene expression studies – considering duplicated genes. Fish and Shellfish Immunology, 2021, 115, 58-69.	3.6	7
77	Patterns of the innate immune response in tambaqui Colossoma macropomum: Modulation of gene expression in haemorrhagic septicaemia caused by Aeromonas hydrophila. Microbial Pathogenesis, 2021, 150, 104638.	2.9	6
78	Transcriptome Sequence of the Bloodstream Form of <i>Trypanoplasma borreli</i> , a Hematozoic Parasite of Fish Transmitted by Leeches. Genome Announcements, 2017, 5, .	0.8	5
79	Conservation of members of the free fatty acid receptor gene family in common carp. Developmental and Comparative Immunology, 2022, 126, 104240.	2.3	4
80	ETosis in tambaqui Colossoma macropomum: A programmed cell death pathway and approach of leukocytes immune response. Microbial Pathogenesis, 2021, 155, 104918.	2.9	3
81	Occurrence of foamy macrophages during the innate response of zebrafish to trypanosome infections. ELife, 2021, 10, .	6.0	3
82	Animal models for the study of innate immunity: protozoan infections in fish. , 2004, , 67-89.		2
83	Fish Macrophages. , 2022, , 203-227.		2
84	Macrophage Heterogeneity in the Intestinal Cells of Salmon: Hints From Transcriptomic and Imaging Data. Frontiers in Immunology, 2021, 12, 798156.	4.8	1
85	Preface to the special issue: Intestinal immunity. Developmental and Comparative Immunology, 2016, 64, 1.	2.3	Ο
86	Differences in growth of Trypanoplasma borreli in carp serum is dependent on transferrin genotype. Fish and Shellfish Immunology, 2021, 114, 58-64.	3.6	0