Courtney C Aldrich

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2041437/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chemoselective Reduction of Tertiary Amides by 1,3-DiphenylÂdisiloxane (DPDS). Synthesis, 2022, 54, 2205-2212.	2.3	2
2	Cardiac ryanodine receptor N-terminal region biosensors identify novel inhibitors via FRET-based high-throughput screening. Journal of Biological Chemistry, 2022, 298, 101412.	3.4	2
3	A Virtual Collection Focused on Antifungal Drug Discovery. Journal of Medicinal Chemistry, 2022, , .	6.4	1
4	A Virtual Collection Focused on Antifungal Drug Discovery. ACS Infectious Diseases, 2022, , .	3.8	0
5	A Virtual Collection Focused on Antifungal Drug Discovery. ACS Medicinal Chemistry Letters, 2022, 13, 327.	2.8	0
6	Synthesis and biological evaluation of orally active prodrugs and analogs of para-aminosalicylic acid (PAS). European Journal of Medicinal Chemistry, 2022, 232, 114201.	5.5	4
7	Parameterization and Application of the General Amber Force Field to Model Fluoro Substituted Furanose Moieties and Nucleosides. Molecules, 2022, 27, 2616.	3.8	0
8	Twoâ€way regulation of protein expression for identification and validation of onâ€ŧarget inhibitors of <i>Mycobacterium tuberculosis</i> . FASEB Journal, 2022, 36, .	0.5	0
9	Total synthesis of pseudouridimycin and its epimer <i>via</i> Ugi-type multicomponent reaction. Chemical Communications, 2022, 58, 7956-7959.	4.1	3
10	Structural and Mechanistic Insights into <i>Mycobacterium abscessus</i> Aspartate Decarboxylase PanD and a Pyrazinoic Acid-Derived Inhibitor. ACS Infectious Diseases, 2022, 8, 1324-1335.	3.8	4
11	Confronting Racism in Chemistry Journals. ACS ES&T Engineering, 2021, 1, 3-5.	7.6	0
12	Confronting Racism in Chemistry Journals. ACS ES&T Water, 2021, 1, 3-5.	4.6	0
13	8-cyanobenzothiazinone analogs with potent antitubercular activity. Medicinal Chemistry Research, 2021, 30, 449-458.	2.4	10
14	<i>Mycobacterium tuberculosis</i> PanD Structure–Function Analysis and Identification of a Potent Pyrazinoic Acid-Derived Enzyme Inhibitor. ACS Chemical Biology, 2021, 16, 1030-1039.	3.4	9
15	Tribute to Jonathan Vennerstrom. ACS Infectious Diseases, 2021, 7, 1872-1873.	3.8	0
16	Reinvestigation of the structure-activity relationships of isoniazid. Tuberculosis, 2021, 129, 102100.	1.9	4
17	Innovative Strategies for the Construction of Diverse 1′-Modified <i>C</i> -Nucleoside Derivatives. Journal of Organic Chemistry, 2021, 86, 16625-16640.	3.2	5
18	Confronting Racism in Chemistry Journals. ACS Pharmacology and Translational Science, 2020, 3, 559-561.	4.9	0

#	Article	IF	CITATIONS
19	Confronting Racism in Chemistry Journals. Biochemistry, 2020, 59, 2313-2315.	2.5	Ο
20	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Biomaterials Science and Engineering, 2020, 6, 2707-2708.	5.2	0
21	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Central Science, 2020, 6, 589-590.	11.3	0
22	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Chemical Biology, 2020, 15, 1282-1283.	3.4	0
23	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Chemical Neuroscience, 2020, 11, 1196-1197.	3.5	0
24	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Earth and Space Chemistry, 2020, 4, 672-673.	2.7	0
25	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Energy Letters, 2020, 5, 1610-1611.	17.4	1
26	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Macro Letters, 2020, 9, 666-667.	4.8	0
27	Update to Our Reader, Reviewer, and Author Communities—April 2020. , 2020, 2, 563-564.		0
28	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Nano, 2020, 14, 5151-5152.	14.6	2
29	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Photonics, 2020, 7, 1080-1081.	6.6	0
30	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Pharmacology and Translational Science, 2020, 3, 455-456.	4.9	0
31	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Sustainable Chemistry and Engineering, 2020, 8, 6574-6575.	6.7	0
32	Update to Our Reader, Reviewer, and Author Communities—April 2020. Analytical Chemistry, 2020, 92, 6187-6188.	6.5	0
33	Update to Our Reader, Reviewer, and Author Communities—April 2020. Chemistry of Materials, 2020, 32, 3678-3679.	6.7	0
34	Update to Our Reader, Reviewer, and Author Communities—April 2020. Environmental Science and Technology Letters, 2020, 7, 280-281.	8.7	1
35	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Education, 2020, 97, 1217-1218.	2.3	1
36	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Proteome Research, 2020, 19, 1883-1884.	3.7	0

#	Article	IF	CITATIONS
37	Confronting Racism in Chemistry Journals. Langmuir, 2020, 36, 7155-7157.	3.5	Ο
38	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Polymer Materials, 2020, 2, 1739-1740.	4.4	0
39	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Combinatorial Science, 2020, 22, 223-224.	3.8	0
40	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Medicinal Chemistry Letters, 2020, 11, 1060-1061.	2.8	0
41	Editorial Confronting Racism in Chemistry Journals. , 2020, 2, 829-831.		0
42	1,3-Diphenyldisiloxane Enables Additive-Free Redox Recycling Reactions and Catalysis with Triphenylphosphine. Synthesis, 2020, 52, 3583-3594.	2.3	4
43	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry Letters, 2020, 11, 5279-5281.	4.6	1
44	Confronting Racism in Chemistry Journals. ACS Applied Energy Materials, 2020, 3, 6016-6018.	5.1	0
45	Confronting Racism in Chemistry Journals. ACS Central Science, 2020, 6, 1012-1014.	11.3	1
46	Confronting Racism in Chemistry Journals. Industrial & Engineering Chemistry Research, 2020, 59, 11915-11917.	3.7	0
47	Confronting Racism in Chemistry Journals. Journal of Natural Products, 2020, 83, 2057-2059.	3.0	0
48	Confronting Racism in Chemistry Journals. ACS Medicinal Chemistry Letters, 2020, 11, 1354-1356.	2.8	0
49	Confronting Racism in Chemistry Journals. Journal of the American Society for Mass Spectrometry, 2020, 31, 1321-1323.	2.8	1
50	Confronting Racism in Chemistry Journals. Energy & amp; Fuels, 2020, 34, 7771-7773.	5.1	0
51	Confronting Racism in Chemistry Journals. ACS Sensors, 2020, 5, 1858-1860.	7.8	0
52	Confronting Racism in Chemistry Journals. ACS Nano, 2020, 14, 7675-7677.	14.6	2
53	Update to Our Reader, Reviewer, and Author Communities—April 2020. Biochemistry, 2020, 59, 1641-1642.	2.5	0
54	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical & Engineering Data, 2020, 65, 2253-2254.	1.9	0

#	Article	IF	CITATIONS
55	Update to Our Reader, Reviewer, and Author Communities—April 2020. Organic Process Research and Development, 2020, 24, 872-873.	2.7	0
56	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Omega, 2020, 5, 9624-9625.	3.5	0
57	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Electronic Materials, 2020, 2, 1184-1185.	4.3	0
58	Biosynthesis, Mechanism of Action, and Inhibition of the Enterotoxin Tilimycin Produced by the Opportunistic Pathogen <i>Klebsiella oxytoca</i> . ACS Infectious Diseases, 2020, 6, 1976-1997.	3.8	18
59	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Materials & Interfaces, 2020, 12, 20147-20148.	8.0	5
60	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry C, 2020, 124, 9629-9630.	3.1	0
61	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry Letters, 2020, 11, 3571-3572.	4.6	Ο
62	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Synthetic Biology, 2020, 9, 979-980.	3.8	0
63	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Energy Materials, 2020, 3, 4091-4092.	5.1	Ο
64	Confronting Racism in Chemistry Journals. Journal of Chemical Theory and Computation, 2020, 16, 4003-4005.	5.3	0
65	Confronting Racism in Chemistry Journals. Journal of Organic Chemistry, 2020, 85, 8297-8299.	3.2	Ο
66	Confronting Racism in Chemistry Journals. Analytical Chemistry, 2020, 92, 8625-8627.	6.5	0
67	Confronting Racism in Chemistry Journals. Journal of Chemical Education, 2020, 97, 1695-1697.	2.3	0
68	Confronting Racism in Chemistry Journals. Organic Process Research and Development, 2020, 24, 1215-1217.	2.7	0
69	Design, Synthesis, and Biophysical Evaluation of Mechanism-Based Probes for Condensation Domains of Nonribosomal Peptide Synthetases. ACS Chemical Biology, 2020, 15, 1813-1819.	3.4	9
70	Confronting Racism in Chemistry Journals. ACS Sustainable Chemistry and Engineering, 2020, 8, .	6.7	0
71	Confronting Racism in Chemistry Journals. Chemistry of Materials, 2020, 32, 5369-5371.	6.7	0
72	Confronting Racism in Chemistry Journals. Chemical Research in Toxicology, 2020, 33, 1511-1513.	3.3	0

#	Article	IF	CITATIONS
73	Confronting Racism in Chemistry Journals. Inorganic Chemistry, 2020, 59, 8639-8641.	4.0	Ο
74	Confronting Racism in Chemistry Journals. ACS Applied Nano Materials, 2020, 3, 6131-6133.	5.0	0
75	Confronting Racism in Chemistry Journals. ACS Applied Polymer Materials, 2020, 2, 2496-2498.	4.4	0
76	Confronting Racism in Chemistry Journals. ACS Chemical Biology, 2020, 15, 1719-1721.	3.4	0
77	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Theory and Computation, 2020, 16, 2881-2882.	5.3	0
78	Confronting Racism in Chemistry Journals. Organic Letters, 2020, 22, 4919-4921.	4.6	4
79	Confronting Racism in Chemistry Journals. ACS Applied Materials & Interfaces, 2020, 12, 28925-28927.	8.0	13
80	Confronting Racism in Chemistry Journals. Crystal Growth and Design, 2020, 20, 4201-4203.	3.0	1
81	Confronting Racism in Chemistry Journals. Chemical Reviews, 2020, 120, 5795-5797.	47.7	2
82	Confronting Racism in Chemistry Journals. ACS Catalysis, 2020, 10, 7307-7309.	11.2	1
83	Development of small-molecule inhibitors of fatty acyl-AMP and fatty acyl-CoA ligases in Mycobacterium tuberculosis. European Journal of Medicinal Chemistry, 2020, 201, 112408.	5.5	17
84	Confronting Racism in Chemistry Journals. Biomacromolecules, 2020, 21, 2543-2545.	5.4	0
85	Confronting Racism in Chemistry Journals. Journal of Medicinal Chemistry, 2020, 63, 6575-6577.	6.4	0
86	Confronting Racism in Chemistry Journals. Macromolecules, 2020, 53, 5015-5017.	4.8	0
87	Confronting Racism in Chemistry Journals. Nano Letters, 2020, 20, 4715-4717.	9.1	5
88	Confronting Racism in Chemistry Journals. Organometallics, 2020, 39, 2331-2333.	2.3	0
89	Confronting Racism in Chemistry Journals. Journal of the American Chemical Society, 2020, 142, 11319-11321.	13.7	1
90	Psoralen Derivatives as Inhibitors of Mycobacterium tuberculosis Proteasome. Molecules, 2020, 25, 1305.	3.8	6

#	Article	IF	CITATIONS
91	Design, synthesis and structure-activity relationships of novel 15-membered macrolides: Quinolone/quinoline-containing sidechains tethered to the C-6 position of azithromycin acylides. European Journal of Medicinal Chemistry, 2020, 193, 112222.	5.5	18
92	Confronting Racism in Chemistry Journals. Accounts of Chemical Research, 2020, 53, 1257-1259.	15.6	0
93	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry A, 2020, 124, 5271-5273.	2.5	0
94	Confronting Racism in Chemistry Journals. ACS Energy Letters, 2020, 5, 2291-2293.	17.4	0
95	Confronting Racism in Chemistry Journals. Journal of Chemical Information and Modeling, 2020, 60, 3325-3327.	5.4	0
96	Confronting Racism in Chemistry Journals. Journal of Proteome Research, 2020, 19, 2911-2913.	3.7	0
97	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry B, 2020, 124, 5335-5337.	2.6	1
98	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Agricultural and Food Chemistry, 2020, 68, 5019-5020.	5.2	0
99	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry B, 2020, 124, 3603-3604.	2.6	0
100	Confronting Racism in Chemistry Journals. Bioconjugate Chemistry, 2020, 31, 1693-1695.	3.6	0
101	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Nano Materials, 2020, 3, 3960-3961.	5.0	0
102	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Natural Products, 2020, 83, 1357-1358.	3.0	0
103	Confronting Racism in Chemistry Journals. ACS Synthetic Biology, 2020, 9, 1487-1489.	3.8	0
104	Confronting Racism in Chemistry Journals. Journal of Chemical & Engineering Data, 2020, 65, 3403-3405.	1.9	0
105	Update to Our Reader, Reviewer, and Author Communities—April 2020. Bioconjugate Chemistry, 2020, 31, 1211-1212.	3.6	0
106	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Health and Safety, 2020, 27, 133-134.	2.1	0
107	Update to Our Reader, Reviewer, and Author Communities—April 2020. Chemical Research in Toxicology, 2020, 33, 1509-1510.	3.3	0
108	Update to Our Reader, Reviewer, and Author Communities—April 2020. Energy & Fuels, 2020, 34, 5107-5108.	5.1	0

#	Article	IF	CITATIONS
109	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Bio Materials, 2020, 3, 2873-2874.	4.6	0
110	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Organic Chemistry, 2020, 85, 5751-5752.	3.2	0
111	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of the American Society for Mass Spectrometry, 2020, 31, 1006-1007.	2.8	0
112	Update to Our Reader, Reviewer, and Author Communities—April 2020. Accounts of Chemical Research, 2020, 53, 1001-1002.	15.6	0
113	Update to Our Reader, Reviewer, and Author Communities—April 2020. Biomacromolecules, 2020, 21, 1966-1967.	5.4	Ο
114	Update to Our Reader, Reviewer, and Author Communities—April 2020. Chemical Reviews, 2020, 120, 3939-3940.	47.7	0
115	Update to Our Reader, Reviewer, and Author Communities—April 2020. Environmental Science & Technology, 2020, 54, 5307-5308.	10.0	0
116	Update to Our Reader, Reviewer, and Author Communities—April 2020. Langmuir, 2020, 36, 4565-4566.	3.5	0
117	Update to Our Reader, Reviewer, and Author Communities—April 2020. Molecular Pharmaceutics, 2020, 17, 1445-1446.	4.6	0
118	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Infectious Diseases, 2020, 6, 891-892.	3.8	0
119	Update to Our Reader, Reviewer, and Author Communities—April 2020. Crystal Growth and Design, 2020, 20, 2817-2818.	3.0	1
120	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Medicinal Chemistry, 2020, 63, 4409-4410.	6.4	0
121	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry A, 2020, 124, 3501-3502.	2.5	0
122	Update to Our Reader, Reviewer, and Author Communities—April 2020. Nano Letters, 2020, 20, 2935-2936.	9.1	0
123	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Sensors, 2020, 5, 1251-1252.	7.8	0
124	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Information and Modeling, 2020, 60, 2651-2652.	5.4	0
125	Update to Our Reader, Reviewer, and Author Communities—April 2020. Industrial & Engineering Chemistry Research, 2020, 59, 8509-8510.	3.7	0
126	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of the American Chemical Society, 2020, 142, 8059-8060.	13.7	3

#	Article	IF	CITATIONS
127	Update to Our Reader, Reviewer, and Author Communities—April 2020. Inorganic Chemistry, 2020, 59, 5796-5797.	4.0	Ο
128	Update to Our Reader, Reviewer, and Author Communities—April 2020. Organometallics, 2020, 39, 1665-1666.	2.3	0
129	Update to Our Reader, Reviewer, and Author Communities—April 2020. Organic Letters, 2020, 22, 3307-3308.	4.6	0
130	Chemical Microbiology. ACS Infectious Diseases, 2020, 6, 540-540.	3.8	0
131	Confronting Racism in Chemistry Journals. ACS Biomaterials Science and Engineering, 2020, 6, 3690-3692.	5.2	1
132	Confronting Racism in Chemistry Journals. ACS Omega, 2020, 5, 14857-14859.	3.5	1
133	The Biotin Biosynthetic Pathway in Mycobacterium tuberculosis is a Validated Target for the Development of Antibacterial Agents. Current Medicinal Chemistry, 2020, 27, 4194-4232.	2.4	7
134	Confronting Racism in Chemistry Journals. ACS Applied Electronic Materials, 2020, 2, 1774-1776.	4.3	0
135	Confronting Racism in Chemistry Journals. Journal of Agricultural and Food Chemistry, 2020, 68, 6941-6943.	5.2	Ο
136	Confronting Racism in Chemistry Journals. ACS Earth and Space Chemistry, 2020, 4, 961-963.	2.7	0
137	Confronting Racism in Chemistry Journals. Environmental Science and Technology Letters, 2020, 7, 447-449.	8.7	0
138	Confronting Racism in Chemistry Journals. ACS Combinatorial Science, 2020, 22, 327-329.	3.8	0
139	Confronting Racism in Chemistry Journals. ACS Infectious Diseases, 2020, 6, 1529-1531.	3.8	Ο
140	Confronting Racism in Chemistry Journals. ACS Applied Bio Materials, 2020, 3, 3925-3927.	4.6	0
141	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry C, 2020, 124, 14069-14071.	3.1	О
142	Confronting Racism in Chemistry Journals. ACS Macro Letters, 2020, 9, 1004-1006.	4.8	0
143	Confronting Racism in Chemistry Journals. Molecular Pharmaceutics, 2020, 17, 2229-2231.	4.6	1
144	Confronting Racism in Chemistry Journals. ACS Chemical Neuroscience, 2020, 11, 1852-1854.	3.5	1

9

#	Article	IF	CITATIONS
145	Confronting Racism in Chemistry Journals. ACS Photonics, 2020, 7, 1586-1588.	6.6	0
146	Confronting Racism in Chemistry Journals. Environmental Science & Technology, 2020, 54, 7735-7737.	10.0	0
147	Confronting Racism in Chemistry Journals. Journal of Chemical Health and Safety, 2020, 27, 198-200.	2.1	0
148	Macozinone: revised synthesis and crystal structure of a promising new drug for treating drug-sensitive and drug-resistant tuberculosis. Acta Crystallographica Section C, Structural Chemistry, 2019, 75, 1031-1035.	0.5	12
149	Noncompetitive inhibitors of TNFR1 probe conformational activation states. Science Signaling, 2019, 12, .	3.6	40
150	Development of an imidazole salt catalytic system for the preparation of bis(indolyl)methanes and bis(naphthyl)methane. PLoS ONE, 2019, 14, e0216008.	2.5	9
151	Mechanism of a Standalone Î²â€Łactone Synthetase: New Continuous Assay for a Widespread ANL Superfamily Enzyme. ChemBioChem, 2019, 20, 1701-1711.	2.6	5
152	Spirocyclic and Bicyclic 8-Nitrobenzothiazinones for Tuberculosis with Improved Physicochemical and Pharmacokinetic Properties. ACS Medicinal Chemistry Letters, 2019, 10, 348-351.	2.8	32
153	A Cinchona Alkaloid Antibiotic That Appears To Target ATP Synthase in <i>Streptococcus pneumoniae</i> . Journal of Medicinal Chemistry, 2019, 62, 2305-2332.	6.4	24
154	Central Nervous System-Related Pathogens. ACS Infectious Diseases, 2019, 5, 1975-1975.	3.8	0
155	Investigation of (<i>S</i>)-(â^')-Acidomycin: A Selective Antimycobacterial Natural Product That Inhibits Biotin Synthase. ACS Infectious Diseases, 2019, 5, 598-617.	3.8	22
156	In This Issue, Volume 9, Issue 3. ACS Medicinal Chemistry Letters, 2018, 9, 159-160.	2.8	0
157	Targeting protein biotinylation enhances tuberculosis chemotherapy. Science Translational Medicine, 2018, 10, .	12.4	24
158	Special Issue on Drug Discovery for Global Health. ACS Infectious Diseases, 2018, 4, 429-430.	3.8	0
159	Avoiding Antibiotic Inactivation in <i>Mycobacterium tuberculosis</i> by Rv3406 through Strategic Nucleoside Modification. ACS Infectious Diseases, 2018, 4, 1102-1113.	3.8	14
160	Structural and functional delineation of aerobactin biosynthesis in hypervirulent Klebsiella pneumoniae. Journal of Biological Chemistry, 2018, 293, 7841-7852.	3.4	33
161	PKS–NRPS Enzymology and Structural Biology: Considerations in Protein Production. Methods in Enzymology, 2018, 604, 45-88.	1.0	14
162	Conformationally Constrained Cinnolinone Nucleoside Analogues as Siderophore Biosynthesis Inhibitors for Tuberculosis. ACS Medicinal Chemistry Letters, 2018, 9, 386-391.	2.8	23

#	Article	IF	CITATIONS
163	Mutual potentiation drives synergy between trimethoprim and sulfamethoxazole. Nature Communications, 2018, 9, 1003.	12.8	75
164	Scalable Synthesis of Hydrido-Disiloxanes from Silanes: A One-Pot Preparation of 1,3-Diphenyldisiloxane from Phenylsilane. Synthesis, 2018, 50, 278-281.	2.3	11
165	Whole-Cell Screen of Fragment Library Identifies Gut Microbiota Metabolite Indole Propionic Acid as Antitubercular. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	49
166	Structural Basis of Polyketide Synthase <i>O</i> -Methylation. ACS Chemical Biology, 2018, 13, 3221-3228.	3.4	9
167	Methionine Antagonizes para-Aminosalicylic Acid Activity via Affecting Folate Precursor Biosynthesis in Mycobacterium tuberculosis. Frontiers in Cellular and Infection Microbiology, 2018, 8, 399.	3.9	14
168	Trapping interactions between catalytic domains and carrier proteins of modular biosynthetic enzymes with chemical probes. Natural Product Reports, 2018, 35, 1156-1184.	10.3	43
169	Synthesis of Transition-State Inhibitors of Chorismate Utilizing Enzymes from Bromobenzene <i>cis</i> -1,2-Dihydrodiol. Journal of Organic Chemistry, 2017, 82, 3432-3440.	3.2	7
170	The Ecstasy and Agony of Assay Interference Compounds. Journal of Medicinal Chemistry, 2017, 60, 2165-2168.	6.4	113
171	The Ecstasy and Agony of Assay Interference Compounds. ACS Central Science, 2017, 3, 143-147.	11.3	78
172	The Ecstasy and Agony of Assay Interference Compounds. ACS Chemical Neuroscience, 2017, 8, 420-423.	3.5	8
173	The Ecstasy and Agony of Assay Interference Compounds. Biochemistry, 2017, 56, 1363-1366.	2.5	8
174	The Ecstasy and Agony of Assay Interference Compounds. Journal of Chemical Information and Modeling, 2017, 57, 387-390.	5.4	20
175	The Ecstasy and Agony of Assay Interference Compounds. ACS Medicinal Chemistry Letters, 2017, 8, 379-382.	2.8	35
176	Rational Optimization of Mechanism-Based Inhibitors through Determination of the Microscopic Rate Constants of Inactivation. Journal of the American Chemical Society, 2017, 139, 7132-7135.	13.7	8
177	Structure-Based Optimization of Pyridoxal 5′-Phosphate-Dependent Transaminase Enzyme (BioA) Inhibitors that Target Biotin Biosynthesis in <i>Mycobacterium tuberculosis</i> . Journal of Medicinal Chemistry, 2017, 60, 5507-5520.	6.4	31
178	The Ecstasy and Agony of Assay Interference Compounds. ACS Infectious Diseases, 2017, 3, 259-262.	3.8	4
179	Introducing a New Associate Editor for ACS Infectious Diseases. ACS Infectious Diseases, 2017, 3, 110-110.	3.8	0
180	Chemoselective Reduction of Phosphine Oxides by 1,3â€Diphenylâ€Disiloxane. Chemistry - A European Journal, 2017, 23, 14434-14438.	3.3	32

#	Article	IF	CITATIONS
181	Synthesis and Analysis of Bacterial Folate Metabolism Intermediates and Antifolates. Organic Letters, 2017, 19, 5220-5223.	4.6	20
182	ACS Infectious Diseases Special Issue Focused on Drug Discovery for Global Health. ACS Infectious Diseases, 2017, 3, 329-329.	3.8	0
183	Anchimerically Activated ProTides as Inhibitors of Cap-Dependent Translation and Inducers of Chemosensitization in Mantle Cell Lymphoma. Journal of Medicinal Chemistry, 2017, 60, 8131-8144.	6.4	23
184	Synthesis of a 3-Amino-2,3-dihydropyrid-4-one and Related Heterocyclic Analogues as Mechanism-Based Inhibitors of BioA, a Pyridoxal Phosphate-Dependent Enzyme. Journal of Organic Chemistry, 2017, 82, 7806-7819.	3.2	10
185	A Role for Chemists in Microbiome Research. ACS Infectious Diseases, 2016, 2, 451-451.	3.8	0
186	Structure of the Essential <i>Mtb</i> FadD32 Enzyme: A Promising Drug Target for Treating Tuberculosis. ACS Infectious Diseases, 2016, 2, 579-591.	3.8	37
187	Targeting intracellular p-aminobenzoic acid production potentiates the anti-tubercular action of antifolates. Scientific Reports, 2016, 6, 38083.	3.3	28
188	Discovery of <i>Mycobacterium tuberculosis</i> InhA Inhibitors by Binding Sites Comparison and Ligands Prediction. Journal of Medicinal Chemistry, 2016, 59, 11069-11078.	6.4	26
189	2-Aryl-8-aza-3-deazaadenosine analogues of 5â€2-O-[N-(salicyl)sulfamoyl]adenosine: Nucleoside antibiotics that block siderophore biosynthesis in Mycobacterium tuberculosis. Bioorganic and Medicinal Chemistry, 2016, 24, 3133-3143.	3.0	18
190	Structures of a Nonribosomal Peptide Synthetase Module Bound to MbtH-like Proteins Support a Highly Dynamic Domain Architecture. Journal of Biological Chemistry, 2016, 291, 22559-22571.	3.4	97
191	Domain Organization and Active Site Architecture of a Polyketide Synthase <i>C</i> -methyltransferase. ACS Chemical Biology, 2016, 11, 3319-3327.	3.4	41
192	Vinylogous Dehydration by a Polyketide Dehydratase Domain in Curacin Biosynthesis. Journal of the American Chemical Society, 2016, 138, 16024-16036.	13.7	36
193	The Known Unknowns of Emerging Viruses. ACS Infectious Diseases, 2016, 2, 310-311.	3.8	4
194	Structures of two distinct conformations of holo-non-ribosomal peptide synthetases. Nature, 2016, 529, 235-238.	27.8	210
195	Synthesis and pharmacological evaluation of nucleoside prodrugs designed to target siderophore biosynthesis in Mycobacterium tuberculosis. Bioorganic and Medicinal Chemistry, 2016, 24, 1314-1321.	3.0	21
196	Defining the Chemistry of Infectious Diseases. ACS Infectious Diseases, 2016, 2, 1-1.	3.8	1
197	Measurement of Nonribosomal Peptide Synthetase Adenylation Domain Activity Using a Continuous Hydroxylamine Release Assay. Methods in Molecular Biology, 2016, 1401, 53-61.	0.9	17
198	Mitsunobu Reactions Catalytic in Phosphine and a Fully Catalytic System. Angewandte Chemie - International Edition, 2015, 54, 13041-13044.	13.8	107

#	Article	IF	CITATIONS
199	Stereocontrolled Synthesis of a Potential Transition-State Inhibitor of the Salicylate Synthase MbtI from <i>Mycobacterium tuberculosis</i> . Journal of Organic Chemistry, 2015, 80, 6545-6552.	3.2	14
200	Human Urinary Composition Controls Antibacterial Activity of Siderocalin*. Journal of Biological Chemistry, 2015, 290, 15949-15960.	3.4	45
201	Unsaturated Lipid Assimilation by Mycobacteria Requires Auxiliary cis-trans Enoyl CoA Isomerase. Chemistry and Biology, 2015, 22, 1577-1587.	6.0	24
202	Polyketide Quinones Are Alternate Intermediate Electron Carriers during Mycobacterial Respiration in Oxygen-Deficient Niches. Molecular Cell, 2015, 60, 637-650.	9.7	53
203	Antibiotic Discovery for Mycobacteria. ACS Infectious Diseases, 2015, 1, 576-577.	3.8	1
204	Tylosin polyketide synthase module 3: stereospecificity, stereoselectivity and steady-state kinetic analysis of β-processing domains via diffusible, synthetic substrates. Chemical Science, 2015, 6, 5027-5033.	7.4	15
205	Introductory Editorial for <i>ACS Infectious Diseases</i> . ACS Infectious Diseases, 2015, 1, 1-2.	3.8	2
206	Target-Based Identification of Whole-Cell Active Inhibitors of Biotin Biosynthesis in Mycobacterium tuberculosis. Chemistry and Biology, 2015, 22, 76-86.	6.0	42
207	Fragment-Based Exploration of Binding Site Flexibility in <i>Mycobacterium tuberculosis</i> BioA. Journal of Medicinal Chemistry, 2015, 58, 5208-5217.	6.4	29
208	Functional Characterization of a Dehydratase Domain from the Pikromycin Polyketide Synthase. Journal of the American Chemical Society, 2015, 137, 7003-7006.	13.7	29
209	Synthesis and Pharmacokinetic Evaluation of Siderophore Biosynthesis Inhibitors for <i>Mycobacterium tuberculosis</i> . Journal of Medicinal Chemistry, 2015, 58, 5459-5475.	6.4	46
210	Investigation and Conformational Analysis of Fluorinated Nucleoside Antibiotics Targeting Siderophore Biosynthesis. Journal of Organic Chemistry, 2015, 80, 4835-4850.	3.2	26
211	Targeting <i>Mycobacterium tuberculosis</i> Biotin Protein Ligase (MtBPL) with Nucleoside-Based Bisubstrate Adenylation Inhibitors. Journal of Medicinal Chemistry, 2015, 58, 7349-7369.	6.4	39
212	Going Viral. ACS Infectious Diseases, 2015, 1, 399-399.	3.8	16
213	Mycobacterium tuberculosis IMPDH in Complexes with Substrates, Products and Antitubercular Compounds. PLoS ONE, 2015, 10, e0138976.	2.5	35
214	Polyketide Intermediate Mimics as Probes for Revealing Cryptic Stereochemistry of Ketoreductase Domains. ACS Chemical Biology, 2014, 9, 2914-2922.	3.4	12
215	Inhibition of <i>Mycobacterium tuberculosis</i> Transaminase BioA by Aryl Hydrazines and Hydrazides. ChemBioChem, 2014, 15, 575-586.	2.6	44
216	Structure–Activity Relationship Analysis of Imidazoquinolines with Toll-like Receptors 7 and 8 Selectivity and Enhanced Cytokine Induction. Journal of Medicinal Chemistry, 2014, 57, 339-347.	6.4	49

#	Article	IF	CITATIONS
217	Reaction intermediate analogues as bisubstrate inhibitors of pantothenate synthetase. Bioorganic and Medicinal Chemistry, 2014, 22, 1726-1735.	3.0	19
218	Synthesis of Chromone, Quinolone, and Benzoxazinone Sulfonamide Nucleosides as Conformationally Constrained Inhibitors of Adenylating Enzymes Required for Siderophore Biosynthesis. Journal of Organic Chemistry, 2013, 78, 7470-7481.	3.2	43
219	Characterization of AusA: A Dimodular Nonribosomal Peptide Synthetase Responsible for the Production of Aureusimine Pyrazinones. Biochemistry, 2013, 52, 926-937.	2.5	44
220	A genetic strategy to identify targets for the development of drugs that prevent bacterial persistence. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 19095-19100.	7.1	167
221	Bisubstrate Inhibitors of Biotin Protein Ligase in <i>Mycobacterium tuberculosis</i> Resistant to Cyclonucleoside Formation. ACS Medicinal Chemistry Letters, 2013, 4, 1213-1217.	2.8	35
222	Structure–activity relationships of 2-aminothiazoles effective against Mycobacterium tuberculosis. Bioorganic and Medicinal Chemistry, 2013, 21, 6385-6397.	3.0	66
223	Synthesis, pH-dependent, and plasma stability of meropenem prodrugs for potential use against drug-resistant tuberculosis. Bioorganic and Medicinal Chemistry, 2013, 21, 5605-5617.	3.0	25
224	Engineering the Substrate Specificity of the DhbE Adenylation Domain by Yeast Cell Surface Display. Chemistry and Biology, 2013, 20, 92-101.	6.0	80
225	Non-Nucleoside Inhibitors of BasE, an Adenylating Enzyme in the Siderophore Biosynthetic Pathway of the Opportunistic Pathogen <i>Acinetobacter baumannii</i> . Journal of Medicinal Chemistry, 2013, 56, 2385-2405.	6.4	48
226	Editorial [Hot Topic: TB Drug Development (Guest Editor: Courtney C. Aldrich)]. Current Topics in Medicinal Chemistry, 2012, 12, 671-671.	2.1	1
227	Design and Synthesis of Potential Mechanism-Based Inhibitors of the Aminotransferase BioA Involved in Biotin Biosynthesis. Journal of Organic Chemistry, 2012, 77, 6051-6058.	3.2	12
228	Structure of PA1221, a Nonribosomal Peptide Synthetase Containing Adenylation and Peptidyl Carrier Protein Domains. Biochemistry, 2012, 51, 3252-3263.	2.5	121
229	Development of a Selective Activity-Based Probe for Adenylating Enzymes: Profiling MbtA Involved in Siderophore Biosynthesis from <i>Mycobacterium tuberculosis</i> ACS Chemical Biology, 2012, 7, 1653-1658.	3.4	54
230	Total Synthesis and Biological Evaluation of Transvalencin Z. Journal of Natural Products, 2012, 75, 1037-1043.	3.0	13
231	Discovery of Imidazoquinolines with Toll-Like Receptor 7/8 Independent Cytokine Induction. ACS Medicinal Chemistry Letters, 2012, 3, 501-504.	2.8	33
232	Pyrazinamide: A Frontline Drug Used for Tuberculosis. Molecular Mechanism of Action Resolved after 50 Years?. ChemMedChem, 2012, 7, 558-560.	3.2	13
233	Structural and Functional Investigation of the Intermolecular Interaction between NRPS Adenylation and Carrier Protein Domains. Chemistry and Biology, 2012, 19, 188-198.	6.0	130
234	Antimetabolite Poisoning of Cofactor Biosynthesis. Chemistry and Biology, 2012, 19, 543-544.	6.0	2

#	Article	IF	CITATIONS
235	Adenylating Enzymes in Mycobacterium tuberculosis as Drug Targets. Current Topics in Medicinal Chemistry, 2012, 12, 766-796.	2.1	62
236	Mechanism-based Inactivation by Aromatization of the Transaminase BioA Involved in Biotin Biosynthesis in <i>Mycobaterium tuberculosis</i> . Journal of the American Chemical Society, 2011, 133, 18194-18201.	13.7	34
237	Bisubstrate Adenylation Inhibitors of Biotin Protein Ligase from Mycobacterium tuberculosis. Chemistry and Biology, 2011, 18, 1432-1441.	6.0	83
238	A high-throughput screening fluorescence polarization assay for fatty acid adenylating enzymes in Mycobacterium tuberculosis. Analytical Biochemistry, 2011, 417, 264-273.	2.4	12
239	A continuous fluorescence displacement assay for BioA: An enzyme involved in biotin biosynthesis. Analytical Biochemistry, 2011, 416, 27-38.	2.4	17
240	Evaluating the Sensitivity of Mycobacterium tuberculosis to Biotin Deprivation Using Regulated Gene Expression. PLoS Pathogens, 2011, 7, e1002264.	4.7	127
241	Inhibitors of the Salicylate Synthase (MbtI) from <i>Mycobacterium tuberculosis</i> Discovered by Highâ€Throughput Screening. ChemMedChem, 2010, 5, 2079-2087.	3.2	41
242	Development of a high-throughput fluorescence polarization assay for the discovery of phosphopantetheinyl transferase inhibitors. Analytical Biochemistry, 2010, 403, 13-19.	2.4	30
243	A continuous kinetic assay for adenylation enzyme activity and inhibition. Analytical Biochemistry, 2010, 404, 56-63.	2.4	90
244	Assigning Enzyme Function from the Metabolic Milieu. Chemistry and Biology, 2010, 17, 313-314.	6.0	3
245	Efficient Pd-Catalyzed Coupling of Tautomerizable Heterocycles with Terminal Alkynes via Câ^'OH Bond Activation Using PyBrOP. Organic Letters, 2010, 12, 2286-2289.	4.6	49
246	Triazole-Linked Inhibitors of Inosine Monophosphate Dehydrogenase from Human and <i>Mycobacterium tuberculosis</i> . Journal of Medicinal Chemistry, 2010, 53, 4768-4778.	6.4	65
247	Kinetic and Inhibition Studies of Dihydroxybenzoate-AMP Ligase from <i>Escherichia coli</i> . Biochemistry, 2010, 49, 3648-3657.	2.5	34
248	Biochemical and Structural Characterization of Bisubstrate Inhibitors of BasE, the Self-Standing Nonribosomal Peptide Synthetase Adenylate-Forming Enzyme of Acinetobactin Synthesis,. Biochemistry, 2010, 49, 9292-9305.	2.5	52
249	Copper(II)-Catalyzed Conversion of Aryl/Heteroaryl Boronic Acids, Boronates, and Trifluoroborates into the Corresponding Azides: Substrate Scope and Limitations. Synthesis, 2010, 2010, 1441-1448.	2.3	37
250	The Global Virulence Regulators VsrAD and PhcA Control Secondary Metabolism in the Plant Pathogen <i>Ralstonia solanacearum</i> . ChemBioChem, 2009, 10, 2730-2732.	2.6	38
251	Selective inhibition of nicotinamide adenine dinucleotide kinases by dinucleoside disulfide mimics of nicotinamide adenine dinucleotide analogues. Bioorganic and Medicinal Chemistry, 2009, 17, 5656-5664.	3.0	21
252	Structure and Cytotoxicity of Arnamial and Related Fungal Sesquiterpene Aryl Esters. Journal of Natural Products, 2009, 72, 1888-1891.	3.0	45

#	Article	IF	CITATIONS
253	Synthesis of deuteriumâ€labelled 5′â€ <i>O</i> â€[<i>N</i> â€(Salicyl)sulfamoyl]adenosine (Salâ€AMSâ€d ₄) as an internal standard for quantitation of Salâ€AMS. Journal of Labelled Compounds and Radiopharmaceuticals, 2008, 51, 118-122.	1.0	5
254	Inhibition of Siderophore Biosynthesis by 2-Triazole Substituted Analogues of 5′- <i>O</i> -[<i>N</i> -(Salicyl)sulfamoyl]adenosine: Antibacterial Nucleosides Effective against <i>Mycobacterium tuberculosis</i> . Journal of Medicinal Chemistry, 2008, 51, 7495-7507.	6.4	83
255	Aryl Acid Adenylating Enzymes Involved in Siderophore Biosynthesis: Fluorescence Polarization Assay, Ligand Specificity, and Discovery of Non-nucleoside Inhibitors via High-Throughput Screening. Biochemistry, 2008, 47, 11735-11749.	2.5	43
256	Quantitative Three Dimensional Structure Linear Interaction Energy Model of 5′- <i>O</i> -[<i>N</i> -(Salicyl)sulfamoyl]adenosine and the Aryl Acid Adenylating Enzyme MbtA. Journal of Medicinal Chemistry, 2008, 51, 7154-7160.	6.4	21
257	Inhibition of Siderophore Biosynthesis in <i>Mycobacterium tuberculosis</i> with Nucleoside Bisubstrate Analogues: Structureâ''Activity Relationships of the Nucleobase Domain of 5′- <i>O</i> -[<i>N</i> -(Salicyl)sulfamoyl]adenosine. Journal of Medicinal Chemistry, 2008, 51, 5349-5370.	6.4	118
258	Biosynthetic Analysis of the Petrobactin Siderophore Pathway from Bacillusanthracis. Journal of Bacteriology, 2007, 189, 1698-1710.	2.2	133
259	5â€~- <i>O</i> -[(<i>N</i> -Acyl)sulfamoyl]adenosines as Antitubercular Agents that Inhibit MbtA:  An Adenylation Enzyme Required for Siderophore Biosynthesis of the Mycobactins. Journal of Medicinal Chemistry, 2007, 50, 6080-6094.	6.4	85
260	A Mechanism-Based Aryl Carrier Protein/Thiolation Domain Affinity Probe. Journal of the American Chemical Society, 2007, 129, 6350-6351.	13.7	80
261	Design, Synthesis, and Biological Evaluation of β-Ketosulfonamide Adenylation Inhibitors as Potential Antitubercular Agents. Organic Letters, 2006, 8, 4707-4710.	4.6	65
262	Rationally Designed Nucleoside Antibiotics That Inhibit Siderophore Biosynthesis of Mycobacteriumtuberculosis. Journal of Medicinal Chemistry, 2006, 49, 31-34.	6.4	214
263	Antitubercular Nucleosides That Inhibit Siderophore Biosynthesis:Â SAR of the Glycosyl Domain. Journal of Medicinal Chemistry, 2006, 49, 7623-7635.	6.4	78
264	Molecular Analysis of the Rebeccamycin l -Amino Acid Oxidase from Lechevalieria aerocolonigenes ATCC 39243. Journal of Bacteriology, 2005, 187, 2084-2092.	2.2	98
265	Biochemical Investigation of Pikromycin Biosynthesis Employing Native Penta- and Hexaketide Chain Elongation Intermediates. Journal of the American Chemical Society, 2005, 127, 8441-8452.	13.7	47
266	Chemoenzymatic Synthesis of the Polyketide Macrolactone 10-Deoxymethynolide. Journal of the American Chemical Society, 2005, 127, 8910-8911.	13.7	55
267	Formal Total Synthesis of the Polyketide Macrolactone Narbonolide. Journal of Organic Chemistry, 2005, 70, 7267-7272.	3.2	17
268	Synthesis of GTP-Derived Ras Ligands. ChemBioChem, 2004, 5, 1448-1453.	2.6	6
269	Iterative Chain Elongation by a Pikromycin Monomodular Polyketide Synthase. Journal of the American Chemical Society, 2003, 125, 4682-4683.	13.7	42
270	Substrate Recognition and Channeling of Monomodules from the Pikromycin Polyketide Synthase. Journal of the American Chemical Society, 2003, 125, 12551-12557.	13.7	28

#	Article	IF	CITATIONS
271	Total Synthesis of the Calphostins:Â Application of Fischer Carbene Complexes and Thermodynamic Control of Atropisomers. Journal of Organic Chemistry, 2001, 66, 1297-1309.	3.2	53
272	Carbene Complexes in the Synthesis of Complex Natural Products:Â Total Synthesis of the Calphostins. Journal of the American Chemical Society, 2000, 122, 3224-3225.	13.7	51
273	Acylamino Chromium Carbene Complexes: Direct Carbonyl Insertion, Formation of Münchnones, and Trapping with Dipolarophiles. Journal of the American Chemical Society, 2000, 122, 7398-7399.	13.7	51
274	Cephemâ€Pyrazinoic Acid Conjugates: Circumventing Resistance in Mycobacterium tuberculosis Chemistry - A European Journal, 0, , .	3.3	3