
David Reby

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2041216/publications.pdf Version: 2024-02-01

DAVID PERV

#	Article	IF	CITATIONS
1	Peer audience effects on children's vocal masculinity and femininity. Philosophical Transactions of the Royal Society B: Biological Sciences, 2022, 377, 20200397.	4.0	3
2	Vocal size exaggeration may have contributed to the origins of vocalic complexity. Philosophical Transactions of the Royal Society B: Biological Sciences, 2022, 377, 20200401.	4.0	4
3	Static and dynamic formant scaling conveys body size and aggression. Royal Society Open Science, 2022, 9, 211496.	2.4	5
4	The development of explicit occupational gender stereotypes in children: Comparing perceived gender ratios and competence beliefs. Journal of Vocational Behavior, 2022, 134, 103703.	3.4	5
5	High-pitch sounds small for domestic dogs: abstract crossmodal correspondences between auditory pitch and visual size. Royal Society Open Science, 2022, 9, 211647.	2.4	9
6	Form follows function in human nonverbal vocalisations. Ethology Ecology and Evolution, 2022, 34, 303-321.	1.4	15
7	Ingressive phonation conveys arousal in human nonverbal vocalizations. Bioacoustics, 2022, 31, 680-695.	1.7	5
8	Nonlinear vocal phenomena affect human perceptions of distress, size and dominance in puppy whines. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, 20220429.	2.6	7
9	Voice Cues Influence Children's Assessment of Adults' Occupational Competence. Journal of Nonverbal Behavior, 2021, 45, 281-296.	1.0	2
10	Efficacy in deceptive vocal exaggeration of human body size. Nature Communications, 2021, 12, 968.	12.8	15
11	Using a new video rating tool to crowd-source analysis of behavioural reaction to stimuli. Animal Cognition, 2021, 24, 947-956.	1.8	6
12	Passive acoustic monitoring of the endangered African Penguin (<i>Spheniscus demersus</i>) using autonomous recording units and ecoacoustic indices. Ibis, 2021, 163, 1472-1480.	1.9	6
13	Harsh is large: nonlinear vocal phenomena lower voice pitch and exaggerate body size. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20210872.	2.6	13
14	Roars, groans and moans: Anatomical correlates of vocal diversity in polygynous deer. Journal of Anatomy, 2021, 239, 1336-1369.	1.5	3
15	Effect of pitch range on dogs' response to conspecific vs. heterospecific distress cries. Scientific Reports, 2021, 11, 19723.	3.3	5
16	Voice modulation: from origin and mechanism to social impact. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20200386.	4.0	10
17	Predicting strength from aggressive vocalizations versus speech in African bushland and urban communities. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20200403.	4.0	12
18	Physiological and perceptual correlates of masculinity in children's voices. Hormones and Behavior, 2020, 117, 104616.	2.1	6

DAVID REBY

#	Article	IF	CITATIONS
19	Context-related variation in the peripartum vocalisations and phonatory behaviours of Holstein-Friesian dairy cows. Applied Animal Behaviour Science, 2020, 231, 105089.	1.9	6
20	Baby cry recognition is independent of motherhood but improved by experience and exposure. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20192499.	2.6	8
21	"This Is What a Mechanic Sounds Likeâ€ŧ Children's Vocal Control Reveals Implicit Occupational Stereotypes. Psychological Science, 2020, 31, 957-967.	3.3	4
22	Individual differences in human voice pitch are preserved from speech to screams, roars and pain cries. Royal Society Open Science, 2020, 7, 191642.	2.4	21
23	Coding of Static Information in Terrestrial Mammal Vocal Signals. Animal Signals and Communication, 2020, , 115-136.	0.8	9
24	Do penguins' vocal sequences conform to linguistic laws?. Biology Letters, 2020, 16, 20190589.	2.3	25
25	Do nonlinear vocal phenomena signal negative valence or high emotion intensity?. Royal Society Open Science, 2020, 7, 201306.	2.4	14
26	Vocal communication of simulated pain. Bioacoustics, 2019, 28, 404-426.	1.7	36
27	Children can control the expression of masculinity and femininity through the voice. Royal Society Open Science, 2019, 6, 190656.	2.4	16
28	The role of sexâ€related voice variation in children's genderâ€role stereotype attributions. British Journal of Developmental Psychology, 2019, 37, 396-409.	1.7	6
29	Human roars communicate upper-body strength more effectively than do screams or aggressive and distressed speech. PLoS ONE, 2019, 14, e0213034.	2.5	32
30	Vocal individuality of Holstein-Friesian cattle is maintained across putatively positive and negative farming contexts. Scientific Reports, 2019, 9, 18468.	3.3	28
31	Dogs perceive and spontaneously normalize formant-related speaker and vowel differences in human speech sounds. Biology Letters, 2019, 15, 20190555.	2.3	13
32	Vocal Communication Between Humans and Animals. , 2019, , 623-632.		0
33	The remarkable vocal anatomy of the koala (<i>Phascolarctos cinereus</i>): insights into lowâ€frequency sound production in a marsupial species. Journal of Anatomy, 2018, 232, 575-595.	1.5	10
34	Women's voice pitch lowers after pregnancy. Evolution and Human Behavior, 2018, 39, 457-463.	2.2	6
35	The role of visual experience in the emergence of cross-modal correspondences. Cognition, 2018, 175, 114-121.	2.2	30
36	The acoustic space of pain: cries as indicators of distress recovering dynamics in pre-verbal infants. Bioacoustics, 2018, 27, 313-325.	1.7	25

David Reby

#	Article	IF	CITATIONS
37	Voice pitch modulation in human mate choice. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20181634.	2.6	48
38	Human Listeners Can Accurately Judge Strength and Height Relative to Self from Aggressive Roars and Speech. IScience, 2018, 4, 273-280.	4.1	40
39	Vocal tract modelling in fallow deer: are male groans nasalized?. Journal of Experimental Biology, 2018, 221, .	1.7	11
40	The pitch of babies' cries predicts their voice pitch at age 5. Biology Letters, 2018, 14, 20180065.	2.3	13
41	Dog-directed speech: why do we use it and do dogs pay attention to it?. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20162429.	2.6	44
42	Sound Properties Associated With Equiluminant Colours. Multisensory Research, 2017, 30, 337-362.	1.1	20
43	Function and Evolution of Vibrato-like Frequency Modulation in Mammals. Current Biology, 2017, 27, 2692-2697.e3.	3.9	11
44	Tennis grunts communicate acoustic cues to sex and contest outcome. Animal Behaviour, 2017, 130, 47-55.	1.9	17
45	Adult human perception of distress in the cries of bonobo, chimpanzee, and human infants. Biological Journal of the Linnean Society, 2017, 120, 919-930.	1.6	25
46	Sex stereotypes influence adults' perception of babies' cries. BMC Psychology, 2016, 4, 19.	2.1	26
47	Vocal Production by Terrestrial Mammals: Source, Filter, and Function. Springer Handbook of Auditory Research, 2016, , 229-259.	0.7	39
48	Evidence of biphonation and source–filter interactions in the bugles of male North American wapiti (<i>Cervus canadensis</i>). Journal of Experimental Biology, 2016, 219, 1224-1236.	1.7	33
49	The evolution of acoustic size exaggeration in terrestrial mammals. Nature Communications, 2016, 7, 12739.	12.8	116
50	Volitional exaggeration of body size through fundamental and formant frequency modulation in humans. Scientific Reports, 2016, 6, 34389.	3.3	42
51	Seven and up: individual differences in male voice fundamental frequency emerge before puberty and remain stable throughout adulthood. Royal Society Open Science, 2016, 3, 160395.	2.4	39
52	Female Sexual Preferences Toward Conspecific and Hybrid Male Mating Calls in Two Species of Polygynous Deer, Cervus elaphus and C. nippon. Evolutionary Biology, 2016, 43, 227-241.	1.1	12
53	Voice Modulation: A Window into the Origins of Human Vocal Control?. Trends in Cognitive Sciences, 2016, 20, 304-318.	7.8	149
54	Cross-Modal Correspondences in Non-human MammalÂCommunication. Multisensory Research, 2016, 29, 49-91.	1.1	18

David Reby

#	Article	IF	CITATIONS
55	Humans (Homo sapiens) judge the emotional content of piglet (Sus scrofa domestica) calls based on simple acoustic parameters, not personality, empathy, nor attitude toward animals Journal of Comparative Psychology (Washington, D C: 1983), 2015, 129, 121-131.	O.5	20
56	Evolutionary Trade-Off between Vocal Tract and Testes Dimensions in Howler Monkeys. Current Biology, 2015, 25, 2839-2844.	3.9	123
57	Expression of Emotional Arousal in Two Different Piglet Call Types. PLoS ONE, 2015, 10, e0135414.	2.5	60
58	Acoustics of male rutting roars in the endangered population of Mesola red deer Cervus elaphus italicus. Mammalian Biology, 2015, 80, 395-400.	1.5	12
59	Control of voice gender in preâ€pubertal children. British Journal of Developmental Psychology, 2014, 32, 100-106.	1.7	28
60	Orienting Asymmetries in Dogs' Responses to Different Communicatory Components of Human Speech. Current Biology, 2014, 24, 2908-2912.	3.9	41
61	Anatomical bases of sex―and size―elated acoustic variation in herring gull alarm calls. Journal of Avian Biology, 2014, 45, 157-166.	1.2	17
62	Do red deer hinds prefer stags that produce harsh roars in mate choice contexts?. Journal of Zoology, 2014, 293, 57-62.	1.7	4
63	Auditory Communication in Domestic Dogs. , 2014, , 131-163.		8
64	What makes a voice masculine: Physiological and acoustical correlates of women's ratings of men's vocal masculinity. Hormones and Behavior, 2014, 66, 569-576.	2.1	53
65	Response of red deer stags (Cervus elaphus) to playback of harsh versus common roars. Die Naturwissenschaften, 2014, 101, 851-854.	1.6	12
66	ls Nonlinear Propagation Responsible for the Brassiness of Elephant Trumpet Calls?. Acta Acustica United With Acustica, 2014, 100, 734-738.	0.8	10
67	Koalas use a novel vocal organ to produce unusually low-pitched mating calls. Current Biology, 2013, 23, R1035-R1036.	3.9	44
68	Fathers are just as good as mothers at recognizing the cries of their baby. Nature Communications, 2013, 4, 1698.	12.8	37
69	Are men better than women at acoustic size judgements?. Biology Letters, 2013, 9, 20130270.	2.3	22
70	Free-Ranging Male Koalas Use Size-Related Variation in Formant Frequencies to Assess Rival Males. PLoS ONE, 2013, 8, e70279.	2.5	23
71	Effect of Formant Frequency Spacing on Perceived Gender in Pre-Pubertal Children's Voices. PLoS ONE, 2013, 8, e81022.	2.5	25
72	Roaring High and Low: Composition and Possible Functions of the Iberian Stag's Vocal Repertoire. PLoS ONE, 2013, 8, e63841.	2.5	27

DAVID REBY

#	Article	IF	CITATIONS
73	Do Red Deer Stags (Cervus elaphus) Use Roar Fundamental Frequency (F0) to Assess Rivals?. PLoS ONE, 2013, 8, e83946.	2.5	13
74	Visualized voices: A case study of audio-visual synesthesia. Neurocase, 2012, 18, 50-56.	0.6	16
75	Spontaneous Voice Gender Imitation Abilities in Adult Speakers. PLoS ONE, 2012, 7, e31353.	2.5	40
76	Estimating the Active Space of Male Koala Bellows: Propagation of Cues to Size and Identity in a Eucalyptus Forest. PLoS ONE, 2012, 7, e45420.	2.5	21
77	Acting Gay: Male Actors Shift the Frequency Components of Their Voices Towards Female Values When Playing Homosexual Characters. Journal of Nonverbal Behavior, 2012, 36, 79-93.	1.0	24
78	Attention grabbing in red deer sexual calls. Animal Cognition, 2012, 15, 265-270.	1.8	39
79	Variability of Female Responses to Conspecific vs. Heterospecific Male Mating Calls in Polygynous Deer: An Open Door to Hybridization?. PLoS ONE, 2011, 6, e23296.	2.5	21
80	Cross Modal Perception of Body Size in Domestic Dogs (Canis familiaris). PLoS ONE, 2011, 6, e17069.	2.5	43
81	Context-Related Acoustic Variation in Male Fallow Deer (Dama dama) Groans. PLoS ONE, 2011, 6, e21066.	2.5	28
82	Why Do Large Dogs Sound More Aggressive to Human Listeners: Acoustic Bases of Motivational Misattributions. Ethology, 2010, 116, 1155-1162.	1.1	17
83	Oestrous red deer hinds prefer male roars with higher fundamental frequencies. Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 2747-2753.	2.6	48
84	Cross-modal individual recognition in domestic horses (<i>Equus caballus</i>). Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 947-951.	7.1	200
85	Contextâ€Related Variation in the Vocal Growling Behaviour of the Domestic Dog (<i>Canis) Tj ETQq1 1 0.78431</i>	14 ₁₉ BT /C	Overlock 10 T
86	Male vocal behavior and phylogeny in deer. Cladistics, 2008, 24, 917-931.	3.3	57
87	Freeâ€Ranging Red Deer Hinds Show Greater Attentiveness to Roars with Formant Frequencies Typical of Young Males. Ethology, 2008, 114, 1023-1031.	1.1	23
88	VOCAL BEHAVIOUR IN THE ENDANGERED CORSICAN DEER: DESCRIPTION AND PHYLOGENETIC IMPLICATIONS. Bioacoustics, 2008, 18, 159-181.	1.7	50
89	Effect of combined source (FO) and filter (formant) variation on red deer hind responses to male roars. Journal of the Acoustical Society of America, 2008, 123, 2936-2943.	1.1	58
90	Human listeners attend to size information in domestic dog growls. Journal of the Acoustical Society of America, 2008, 123, 2903-2909.	1.1	44

DAVID REBY

#	Article	IF	CITATIONS
91	Communication of Male Quality in Owl Hoots. American Naturalist, 2007, 169, 552-562.	2.1	66
92	Female red deer prefer the roars of larger males. Biology Letters, 2007, 3, 382-385.	2.3	174
93	Female perception of size-related formant shifts in red deer, Cervus elaphus. Animal Behaviour, 2007, 74, 707-714.	1.9	65
94	Cepstral coefficients and hidden Markov models reveal idiosyncratic voice characteristics in red deer (Cervus elaphus) stags. Journal of the Acoustical Society of America, 2006, 120, 4080-4089.	1.1	57
95	Vocal communication networks in large terrestrial mammals. , 2005, , 372-389.		11
96	Red deer stags use formants as assessment cues during intrasexual agonistic interactions. Proceedings of the Royal Society B: Biological Sciences, 2005, 272, 941-947.	2.6	261
97	Long-distance communication of acoustic cues to social identity in African elephants. Animal Behaviour, 2003, 65, 317-329.	1.9	264
98	Anatomical constraints generate honesty: acoustic cues to age and weight in the roars of red deer stags. Animal Behaviour, 2003, 65, 519-530.	1.9	486
99	Vocal Communication and Reproduction in Deer. Advances in the Study of Behavior, 2003, 33, 231-264.	1.6	66
100	The descended larynx is not uniquely human. Proceedings of the Royal Society B: Biological Sciences, 2001, 268, 1669-1675.	2.6	349
101	Red Deer (Cervus elaphus) Hinds Discriminate Between the Roars of Their Current Harem-Holder Stag and Those of Neighbouring Stags. Ethology, 2001, 107, 951-959.	1.1	56
102	Diurnal and seasonal variations of roaring activity of farmed red deer stags. Applied Animal Behaviour Science, 2001, 74, 233-239.	1.9	14
103	Spectral acoustic structure of barking in roe deer (Capreolus capreolus). Sex-, age- and individual-related variations. Comptes Rendus De L'Académie Des Sciences SA©rie 3, Sciences De La Vie, 1999, 322, 271-279.	0.8	26
104	Use of Vocalizations to Estimate Population Size of Roe Deer. Journal of Wildlife Management, 1998, 62, 1342.	1.8	12
105	Artificial neural networks as a classification method in the behavioural sciences. Behavioural Processes, 1997, 40, 35-43.	1.1	83